Evaluate
\frac{2ab}{3}
Expand
\frac{2ab}{3}
Share
Copied to clipboard
\left(-\frac{39+1}{3}\right)a\times \frac{1}{40}b\times \frac{1}{3}\left(-6\right)
Multiply 13 and 3 to get 39.
-\frac{40}{3}a\times \frac{1}{40}b\times \frac{1}{3}\left(-6\right)
Add 39 and 1 to get 40.
\frac{-40}{3\times 40}ab\times \frac{1}{3}\left(-6\right)
Multiply -\frac{40}{3} times \frac{1}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{-40}{120}ab\times \frac{1}{3}\left(-6\right)
Do the multiplications in the fraction \frac{-40}{3\times 40}.
-\frac{1}{3}ab\times \frac{1}{3}\left(-6\right)
Reduce the fraction \frac{-40}{120} to lowest terms by extracting and canceling out 40.
\frac{-1}{3\times 3}ab\left(-6\right)
Multiply -\frac{1}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{9}ab\left(-6\right)
Do the multiplications in the fraction \frac{-1}{3\times 3}.
-\frac{1}{9}ab\left(-6\right)
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{-\left(-6\right)}{9}ab
Express -\frac{1}{9}\left(-6\right) as a single fraction.
\frac{6}{9}ab
Multiply -1 and -6 to get 6.
\frac{2}{3}ab
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\left(-\frac{39+1}{3}\right)a\times \frac{1}{40}b\times \frac{1}{3}\left(-6\right)
Multiply 13 and 3 to get 39.
-\frac{40}{3}a\times \frac{1}{40}b\times \frac{1}{3}\left(-6\right)
Add 39 and 1 to get 40.
\frac{-40}{3\times 40}ab\times \frac{1}{3}\left(-6\right)
Multiply -\frac{40}{3} times \frac{1}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{-40}{120}ab\times \frac{1}{3}\left(-6\right)
Do the multiplications in the fraction \frac{-40}{3\times 40}.
-\frac{1}{3}ab\times \frac{1}{3}\left(-6\right)
Reduce the fraction \frac{-40}{120} to lowest terms by extracting and canceling out 40.
\frac{-1}{3\times 3}ab\left(-6\right)
Multiply -\frac{1}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{9}ab\left(-6\right)
Do the multiplications in the fraction \frac{-1}{3\times 3}.
-\frac{1}{9}ab\left(-6\right)
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{-\left(-6\right)}{9}ab
Express -\frac{1}{9}\left(-6\right) as a single fraction.
\frac{6}{9}ab
Multiply -1 and -6 to get 6.
\frac{2}{3}ab
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}