Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-128-128x+128\left(1+x\right)^{2}=608
Use the distributive property to multiply -128 by 1+x.
-128-128x+128\left(1+2x+x^{2}\right)=608
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
-128-128x+128+256x+128x^{2}=608
Use the distributive property to multiply 128 by 1+2x+x^{2}.
-128x+256x+128x^{2}=608
Add -128 and 128 to get 0.
128x+128x^{2}=608
Combine -128x and 256x to get 128x.
128x+128x^{2}-608=0
Subtract 608 from both sides.
128x^{2}+128x-608=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-128±\sqrt{128^{2}-4\times 128\left(-608\right)}}{2\times 128}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 128 for a, 128 for b, and -608 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-128±\sqrt{16384-4\times 128\left(-608\right)}}{2\times 128}
Square 128.
x=\frac{-128±\sqrt{16384-512\left(-608\right)}}{2\times 128}
Multiply -4 times 128.
x=\frac{-128±\sqrt{16384+311296}}{2\times 128}
Multiply -512 times -608.
x=\frac{-128±\sqrt{327680}}{2\times 128}
Add 16384 to 311296.
x=\frac{-128±256\sqrt{5}}{2\times 128}
Take the square root of 327680.
x=\frac{-128±256\sqrt{5}}{256}
Multiply 2 times 128.
x=\frac{256\sqrt{5}-128}{256}
Now solve the equation x=\frac{-128±256\sqrt{5}}{256} when ± is plus. Add -128 to 256\sqrt{5}.
x=\sqrt{5}-\frac{1}{2}
Divide -128+256\sqrt{5} by 256.
x=\frac{-256\sqrt{5}-128}{256}
Now solve the equation x=\frac{-128±256\sqrt{5}}{256} when ± is minus. Subtract 256\sqrt{5} from -128.
x=-\sqrt{5}-\frac{1}{2}
Divide -128-256\sqrt{5} by 256.
x=\sqrt{5}-\frac{1}{2} x=-\sqrt{5}-\frac{1}{2}
The equation is now solved.
-128-128x+128\left(1+x\right)^{2}=608
Use the distributive property to multiply -128 by 1+x.
-128-128x+128\left(1+2x+x^{2}\right)=608
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
-128-128x+128+256x+128x^{2}=608
Use the distributive property to multiply 128 by 1+2x+x^{2}.
-128x+256x+128x^{2}=608
Add -128 and 128 to get 0.
128x+128x^{2}=608
Combine -128x and 256x to get 128x.
128x^{2}+128x=608
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{128x^{2}+128x}{128}=\frac{608}{128}
Divide both sides by 128.
x^{2}+\frac{128}{128}x=\frac{608}{128}
Dividing by 128 undoes the multiplication by 128.
x^{2}+x=\frac{608}{128}
Divide 128 by 128.
x^{2}+x=\frac{19}{4}
Reduce the fraction \frac{608}{128} to lowest terms by extracting and canceling out 32.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{19}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{19+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=5
Add \frac{19}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=5
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\sqrt{5} x+\frac{1}{2}=-\sqrt{5}
Simplify.
x=\sqrt{5}-\frac{1}{2} x=-\sqrt{5}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.