Solve for x
x = \frac{2 \sqrt{966} + 67}{25} \approx 5.166443243
x=\frac{67-2\sqrt{966}}{25}\approx 0.193556757
Graph
Share
Copied to clipboard
-125x^{2}+670x-125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-670±\sqrt{670^{2}-4\left(-125\right)\left(-125\right)}}{2\left(-125\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -125 for a, 670 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-670±\sqrt{448900-4\left(-125\right)\left(-125\right)}}{2\left(-125\right)}
Square 670.
x=\frac{-670±\sqrt{448900+500\left(-125\right)}}{2\left(-125\right)}
Multiply -4 times -125.
x=\frac{-670±\sqrt{448900-62500}}{2\left(-125\right)}
Multiply 500 times -125.
x=\frac{-670±\sqrt{386400}}{2\left(-125\right)}
Add 448900 to -62500.
x=\frac{-670±20\sqrt{966}}{2\left(-125\right)}
Take the square root of 386400.
x=\frac{-670±20\sqrt{966}}{-250}
Multiply 2 times -125.
x=\frac{20\sqrt{966}-670}{-250}
Now solve the equation x=\frac{-670±20\sqrt{966}}{-250} when ± is plus. Add -670 to 20\sqrt{966}.
x=\frac{67-2\sqrt{966}}{25}
Divide -670+20\sqrt{966} by -250.
x=\frac{-20\sqrt{966}-670}{-250}
Now solve the equation x=\frac{-670±20\sqrt{966}}{-250} when ± is minus. Subtract 20\sqrt{966} from -670.
x=\frac{2\sqrt{966}+67}{25}
Divide -670-20\sqrt{966} by -250.
x=\frac{67-2\sqrt{966}}{25} x=\frac{2\sqrt{966}+67}{25}
The equation is now solved.
-125x^{2}+670x-125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-125x^{2}+670x-125-\left(-125\right)=-\left(-125\right)
Add 125 to both sides of the equation.
-125x^{2}+670x=-\left(-125\right)
Subtracting -125 from itself leaves 0.
-125x^{2}+670x=125
Subtract -125 from 0.
\frac{-125x^{2}+670x}{-125}=\frac{125}{-125}
Divide both sides by -125.
x^{2}+\frac{670}{-125}x=\frac{125}{-125}
Dividing by -125 undoes the multiplication by -125.
x^{2}-\frac{134}{25}x=\frac{125}{-125}
Reduce the fraction \frac{670}{-125} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{134}{25}x=-1
Divide 125 by -125.
x^{2}-\frac{134}{25}x+\left(-\frac{67}{25}\right)^{2}=-1+\left(-\frac{67}{25}\right)^{2}
Divide -\frac{134}{25}, the coefficient of the x term, by 2 to get -\frac{67}{25}. Then add the square of -\frac{67}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{134}{25}x+\frac{4489}{625}=-1+\frac{4489}{625}
Square -\frac{67}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{134}{25}x+\frac{4489}{625}=\frac{3864}{625}
Add -1 to \frac{4489}{625}.
\left(x-\frac{67}{25}\right)^{2}=\frac{3864}{625}
Factor x^{2}-\frac{134}{25}x+\frac{4489}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{67}{25}\right)^{2}}=\sqrt{\frac{3864}{625}}
Take the square root of both sides of the equation.
x-\frac{67}{25}=\frac{2\sqrt{966}}{25} x-\frac{67}{25}=-\frac{2\sqrt{966}}{25}
Simplify.
x=\frac{2\sqrt{966}+67}{25} x=\frac{67-2\sqrt{966}}{25}
Add \frac{67}{25} to both sides of the equation.
x ^ 2 -\frac{134}{25}x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{134}{25} rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{67}{25} - u s = \frac{67}{25} + u
Two numbers r and s sum up to \frac{134}{25} exactly when the average of the two numbers is \frac{1}{2}*\frac{134}{25} = \frac{67}{25}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{67}{25} - u) (\frac{67}{25} + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
\frac{4489}{625} - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-\frac{4489}{625} = -\frac{3864}{625}
Simplify the expression by subtracting \frac{4489}{625} on both sides
u^2 = \frac{3864}{625} u = \pm\sqrt{\frac{3864}{625}} = \pm \frac{\sqrt{3864}}{25}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{67}{25} - \frac{\sqrt{3864}}{25} = 0.194 s = \frac{67}{25} + \frac{\sqrt{3864}}{25} = 5.166
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}