Evaluate
-\frac{39a}{4}+\frac{52}{5}
Expand
-\frac{39a}{4}+\frac{52}{5}
Share
Copied to clipboard
-12\times \frac{5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Use the distributive property to multiply -12 by \frac{5}{6}a-\frac{7}{8}.
\frac{-12\times 5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\times \frac{5}{6} as a single fraction.
\frac{-60}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and 5 to get -60.
-10a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Divide -60 by 6 to get -10.
-10a+\frac{-12\left(-7\right)}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\left(-\frac{7}{8}\right) as a single fraction.
-10a+\frac{84}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and -7 to get 84.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Reduce the fraction \frac{84}{8} to lowest terms by extracting and canceling out 4.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{6+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply 3 and 2 to get 6.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{1\times 5+2}{5}\right)
Add 6 and 1 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{5+2}{5}\right)
Multiply 1 and 5 to get 5.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{7}{5}\right)
Add 5 and 2 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\times \frac{7}{2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Use the distributive property to multiply \frac{1}{14} by \frac{7}{2}a-\frac{7}{5}.
-10a+\frac{21}{2}+\frac{1\times 7}{14\times 2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Multiply \frac{1}{14} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{7}{28}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Do the multiplications in the fraction \frac{1\times 7}{14\times 2}.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Reduce the fraction \frac{7}{28} to lowest terms by extracting and canceling out 7.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1\left(-7\right)}{14\times 5}
Multiply \frac{1}{14} times -\frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{-7}{70}
Do the multiplications in the fraction \frac{1\left(-7\right)}{14\times 5}.
-10a+\frac{21}{2}+\frac{1}{4}a-\frac{1}{10}
Reduce the fraction \frac{-7}{70} to lowest terms by extracting and canceling out 7.
-\frac{39}{4}a+\frac{21}{2}-\frac{1}{10}
Combine -10a and \frac{1}{4}a to get -\frac{39}{4}a.
-\frac{39}{4}a+\frac{105}{10}-\frac{1}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{21}{2} and \frac{1}{10} to fractions with denominator 10.
-\frac{39}{4}a+\frac{105-1}{10}
Since \frac{105}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{39}{4}a+\frac{104}{10}
Subtract 1 from 105 to get 104.
-\frac{39}{4}a+\frac{52}{5}
Reduce the fraction \frac{104}{10} to lowest terms by extracting and canceling out 2.
-12\times \frac{5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Use the distributive property to multiply -12 by \frac{5}{6}a-\frac{7}{8}.
\frac{-12\times 5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\times \frac{5}{6} as a single fraction.
\frac{-60}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and 5 to get -60.
-10a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Divide -60 by 6 to get -10.
-10a+\frac{-12\left(-7\right)}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\left(-\frac{7}{8}\right) as a single fraction.
-10a+\frac{84}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and -7 to get 84.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Reduce the fraction \frac{84}{8} to lowest terms by extracting and canceling out 4.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{6+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply 3 and 2 to get 6.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{1\times 5+2}{5}\right)
Add 6 and 1 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{5+2}{5}\right)
Multiply 1 and 5 to get 5.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{7}{5}\right)
Add 5 and 2 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\times \frac{7}{2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Use the distributive property to multiply \frac{1}{14} by \frac{7}{2}a-\frac{7}{5}.
-10a+\frac{21}{2}+\frac{1\times 7}{14\times 2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Multiply \frac{1}{14} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{7}{28}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Do the multiplications in the fraction \frac{1\times 7}{14\times 2}.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Reduce the fraction \frac{7}{28} to lowest terms by extracting and canceling out 7.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1\left(-7\right)}{14\times 5}
Multiply \frac{1}{14} times -\frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{-7}{70}
Do the multiplications in the fraction \frac{1\left(-7\right)}{14\times 5}.
-10a+\frac{21}{2}+\frac{1}{4}a-\frac{1}{10}
Reduce the fraction \frac{-7}{70} to lowest terms by extracting and canceling out 7.
-\frac{39}{4}a+\frac{21}{2}-\frac{1}{10}
Combine -10a and \frac{1}{4}a to get -\frac{39}{4}a.
-\frac{39}{4}a+\frac{105}{10}-\frac{1}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{21}{2} and \frac{1}{10} to fractions with denominator 10.
-\frac{39}{4}a+\frac{105-1}{10}
Since \frac{105}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{39}{4}a+\frac{104}{10}
Subtract 1 from 105 to get 104.
-\frac{39}{4}a+\frac{52}{5}
Reduce the fraction \frac{104}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}