Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-12\times \frac{5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Use the distributive property to multiply -12 by \frac{5}{6}a-\frac{7}{8}.
\frac{-12\times 5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\times \frac{5}{6} as a single fraction.
\frac{-60}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and 5 to get -60.
-10a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Divide -60 by 6 to get -10.
-10a+\frac{-12\left(-7\right)}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\left(-\frac{7}{8}\right) as a single fraction.
-10a+\frac{84}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and -7 to get 84.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Reduce the fraction \frac{84}{8} to lowest terms by extracting and canceling out 4.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{6+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply 3 and 2 to get 6.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{1\times 5+2}{5}\right)
Add 6 and 1 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{5+2}{5}\right)
Multiply 1 and 5 to get 5.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{7}{5}\right)
Add 5 and 2 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\times \frac{7}{2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Use the distributive property to multiply \frac{1}{14} by \frac{7}{2}a-\frac{7}{5}.
-10a+\frac{21}{2}+\frac{1\times 7}{14\times 2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Multiply \frac{1}{14} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{7}{28}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Do the multiplications in the fraction \frac{1\times 7}{14\times 2}.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Reduce the fraction \frac{7}{28} to lowest terms by extracting and canceling out 7.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1\left(-7\right)}{14\times 5}
Multiply \frac{1}{14} times -\frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{-7}{70}
Do the multiplications in the fraction \frac{1\left(-7\right)}{14\times 5}.
-10a+\frac{21}{2}+\frac{1}{4}a-\frac{1}{10}
Reduce the fraction \frac{-7}{70} to lowest terms by extracting and canceling out 7.
-\frac{39}{4}a+\frac{21}{2}-\frac{1}{10}
Combine -10a and \frac{1}{4}a to get -\frac{39}{4}a.
-\frac{39}{4}a+\frac{105}{10}-\frac{1}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{21}{2} and \frac{1}{10} to fractions with denominator 10.
-\frac{39}{4}a+\frac{105-1}{10}
Since \frac{105}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{39}{4}a+\frac{104}{10}
Subtract 1 from 105 to get 104.
-\frac{39}{4}a+\frac{52}{5}
Reduce the fraction \frac{104}{10} to lowest terms by extracting and canceling out 2.
-12\times \frac{5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Use the distributive property to multiply -12 by \frac{5}{6}a-\frac{7}{8}.
\frac{-12\times 5}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\times \frac{5}{6} as a single fraction.
\frac{-60}{6}a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and 5 to get -60.
-10a-12\left(-\frac{7}{8}\right)+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Divide -60 by 6 to get -10.
-10a+\frac{-12\left(-7\right)}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Express -12\left(-\frac{7}{8}\right) as a single fraction.
-10a+\frac{84}{8}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply -12 and -7 to get 84.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{3\times 2+1}{2}a-\frac{1\times 5+2}{5}\right)
Reduce the fraction \frac{84}{8} to lowest terms by extracting and canceling out 4.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{6+1}{2}a-\frac{1\times 5+2}{5}\right)
Multiply 3 and 2 to get 6.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{1\times 5+2}{5}\right)
Add 6 and 1 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{5+2}{5}\right)
Multiply 1 and 5 to get 5.
-10a+\frac{21}{2}+\frac{1}{14}\left(\frac{7}{2}a-\frac{7}{5}\right)
Add 5 and 2 to get 7.
-10a+\frac{21}{2}+\frac{1}{14}\times \frac{7}{2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Use the distributive property to multiply \frac{1}{14} by \frac{7}{2}a-\frac{7}{5}.
-10a+\frac{21}{2}+\frac{1\times 7}{14\times 2}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Multiply \frac{1}{14} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{7}{28}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Do the multiplications in the fraction \frac{1\times 7}{14\times 2}.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1}{14}\left(-\frac{7}{5}\right)
Reduce the fraction \frac{7}{28} to lowest terms by extracting and canceling out 7.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{1\left(-7\right)}{14\times 5}
Multiply \frac{1}{14} times -\frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
-10a+\frac{21}{2}+\frac{1}{4}a+\frac{-7}{70}
Do the multiplications in the fraction \frac{1\left(-7\right)}{14\times 5}.
-10a+\frac{21}{2}+\frac{1}{4}a-\frac{1}{10}
Reduce the fraction \frac{-7}{70} to lowest terms by extracting and canceling out 7.
-\frac{39}{4}a+\frac{21}{2}-\frac{1}{10}
Combine -10a and \frac{1}{4}a to get -\frac{39}{4}a.
-\frac{39}{4}a+\frac{105}{10}-\frac{1}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{21}{2} and \frac{1}{10} to fractions with denominator 10.
-\frac{39}{4}a+\frac{105-1}{10}
Since \frac{105}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{39}{4}a+\frac{104}{10}
Subtract 1 from 105 to get 104.
-\frac{39}{4}a+\frac{52}{5}
Reduce the fraction \frac{104}{10} to lowest terms by extracting and canceling out 2.