Solve for x
x=\frac{5-25y}{2}
Solve for y
y=-\frac{2x}{25}+\frac{1}{5}
Graph
Quiz
Linear Equation
5 problems similar to:
- 12 ( \frac { - 4 x } { 15 } + \frac { 1 } { 3 } ) + 40 y = 4
Share
Copied to clipboard
-180\left(\frac{-4x}{15}+\frac{1}{3}\right)+600y=60
Multiply both sides of the equation by 15, the least common multiple of 15,3.
-180\left(\frac{-4x}{15}+\frac{5}{15}\right)+600y=60
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 3 is 15. Multiply \frac{1}{3} times \frac{5}{5}.
-180\times \frac{-4x+5}{15}+600y=60
Since \frac{-4x}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
-12\left(-4x+5\right)+600y=60
Cancel out 15, the greatest common factor in 180 and 15.
48x-60+600y=60
Use the distributive property to multiply -12 by -4x+5.
48x+600y=60+60
Add 60 to both sides.
48x+600y=120
Add 60 and 60 to get 120.
48x=120-600y
Subtract 600y from both sides.
\frac{48x}{48}=\frac{120-600y}{48}
Divide both sides by 48.
x=\frac{120-600y}{48}
Dividing by 48 undoes the multiplication by 48.
x=\frac{5-25y}{2}
Divide 120-600y by 48.
-180\left(\frac{-4x}{15}+\frac{1}{3}\right)+600y=60
Multiply both sides of the equation by 15, the least common multiple of 15,3.
-180\left(\frac{-4x}{15}+\frac{5}{15}\right)+600y=60
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 3 is 15. Multiply \frac{1}{3} times \frac{5}{5}.
-180\times \frac{-4x+5}{15}+600y=60
Since \frac{-4x}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
-12\left(-4x+5\right)+600y=60
Cancel out 15, the greatest common factor in 180 and 15.
48x-60+600y=60
Use the distributive property to multiply -12 by -4x+5.
-60+600y=60-48x
Subtract 48x from both sides.
600y=60-48x+60
Add 60 to both sides.
600y=120-48x
Add 60 and 60 to get 120.
\frac{600y}{600}=\frac{120-48x}{600}
Divide both sides by 600.
y=\frac{120-48x}{600}
Dividing by 600 undoes the multiplication by 600.
y=-\frac{2x}{25}+\frac{1}{5}
Divide 120-48x by 600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}