Solve for x
x=20
Graph
Share
Copied to clipboard
-12-\left(-x\right)=\sqrt{2x+24}
Subtract -x from both sides of the equation.
-12+x=\sqrt{2x+24}
Multiply -1 and -1 to get 1.
\left(-12+x\right)^{2}=\left(\sqrt{2x+24}\right)^{2}
Square both sides of the equation.
144-24x+x^{2}=\left(\sqrt{2x+24}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-12+x\right)^{2}.
144-24x+x^{2}=2x+24
Calculate \sqrt{2x+24} to the power of 2 and get 2x+24.
144-24x+x^{2}-2x=24
Subtract 2x from both sides.
144-26x+x^{2}=24
Combine -24x and -2x to get -26x.
144-26x+x^{2}-24=0
Subtract 24 from both sides.
120-26x+x^{2}=0
Subtract 24 from 144 to get 120.
x^{2}-26x+120=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-26 ab=120
To solve the equation, factor x^{2}-26x+120 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
a=-20 b=-6
The solution is the pair that gives sum -26.
\left(x-20\right)\left(x-6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=20 x=6
To find equation solutions, solve x-20=0 and x-6=0.
-12=-20+\sqrt{2\times 20+24}
Substitute 20 for x in the equation -12=-x+\sqrt{2x+24}.
-12=-12
Simplify. The value x=20 satisfies the equation.
-12=-6+\sqrt{2\times 6+24}
Substitute 6 for x in the equation -12=-x+\sqrt{2x+24}.
-12=0
Simplify. The value x=6 does not satisfy the equation.
x=20
Equation x-12=\sqrt{2x+24} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}