Factor
4\left(2-x\right)\left(29x+2\right)
Evaluate
16+224x-116x^{2}
Graph
Share
Copied to clipboard
4\left(-29x^{2}+56x+4\right)
Factor out 4.
a+b=56 ab=-29\times 4=-116
Consider -29x^{2}+56x+4. Factor the expression by grouping. First, the expression needs to be rewritten as -29x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,116 -2,58 -4,29
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -116.
-1+116=115 -2+58=56 -4+29=25
Calculate the sum for each pair.
a=58 b=-2
The solution is the pair that gives sum 56.
\left(-29x^{2}+58x\right)+\left(-2x+4\right)
Rewrite -29x^{2}+56x+4 as \left(-29x^{2}+58x\right)+\left(-2x+4\right).
29x\left(-x+2\right)+2\left(-x+2\right)
Factor out 29x in the first and 2 in the second group.
\left(-x+2\right)\left(29x+2\right)
Factor out common term -x+2 by using distributive property.
4\left(-x+2\right)\left(29x+2\right)
Rewrite the complete factored expression.
-116x^{2}+224x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-224±\sqrt{224^{2}-4\left(-116\right)\times 16}}{2\left(-116\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-224±\sqrt{50176-4\left(-116\right)\times 16}}{2\left(-116\right)}
Square 224.
x=\frac{-224±\sqrt{50176+464\times 16}}{2\left(-116\right)}
Multiply -4 times -116.
x=\frac{-224±\sqrt{50176+7424}}{2\left(-116\right)}
Multiply 464 times 16.
x=\frac{-224±\sqrt{57600}}{2\left(-116\right)}
Add 50176 to 7424.
x=\frac{-224±240}{2\left(-116\right)}
Take the square root of 57600.
x=\frac{-224±240}{-232}
Multiply 2 times -116.
x=\frac{16}{-232}
Now solve the equation x=\frac{-224±240}{-232} when ± is plus. Add -224 to 240.
x=-\frac{2}{29}
Reduce the fraction \frac{16}{-232} to lowest terms by extracting and canceling out 8.
x=-\frac{464}{-232}
Now solve the equation x=\frac{-224±240}{-232} when ± is minus. Subtract 240 from -224.
x=2
Divide -464 by -232.
-116x^{2}+224x+16=-116\left(x-\left(-\frac{2}{29}\right)\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{29} for x_{1} and 2 for x_{2}.
-116x^{2}+224x+16=-116\left(x+\frac{2}{29}\right)\left(x-2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-116x^{2}+224x+16=-116\times \frac{-29x-2}{-29}\left(x-2\right)
Add \frac{2}{29} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-116x^{2}+224x+16=4\left(-29x-2\right)\left(x-2\right)
Cancel out 29, the greatest common factor in -116 and 29.
x ^ 2 -\frac{56}{29}x -\frac{4}{29} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{56}{29} rs = -\frac{4}{29}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{28}{29} - u s = \frac{28}{29} + u
Two numbers r and s sum up to \frac{56}{29} exactly when the average of the two numbers is \frac{1}{2}*\frac{56}{29} = \frac{28}{29}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{28}{29} - u) (\frac{28}{29} + u) = -\frac{4}{29}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{4}{29}
\frac{784}{841} - u^2 = -\frac{4}{29}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{4}{29}-\frac{784}{841} = -\frac{900}{841}
Simplify the expression by subtracting \frac{784}{841} on both sides
u^2 = \frac{900}{841} u = \pm\sqrt{\frac{900}{841}} = \pm \frac{30}{29}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{28}{29} - \frac{30}{29} = -0.069 s = \frac{28}{29} + \frac{30}{29} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}