Solve for x (complex solution)
x=\frac{-18\sqrt{35}i+14}{103}\approx 0.13592233-1.03387802i
x=\frac{14+18\sqrt{35}i}{103}\approx 0.13592233+1.03387802i
Graph
Share
Copied to clipboard
-103x^{2}-112=-28x
Subtract 112 from both sides.
-103x^{2}-112+28x=0
Add 28x to both sides.
-103x^{2}+28x-112=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-103\right)\left(-112\right)}}{2\left(-103\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -103 for a, 28 for b, and -112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-103\right)\left(-112\right)}}{2\left(-103\right)}
Square 28.
x=\frac{-28±\sqrt{784+412\left(-112\right)}}{2\left(-103\right)}
Multiply -4 times -103.
x=\frac{-28±\sqrt{784-46144}}{2\left(-103\right)}
Multiply 412 times -112.
x=\frac{-28±\sqrt{-45360}}{2\left(-103\right)}
Add 784 to -46144.
x=\frac{-28±36\sqrt{35}i}{2\left(-103\right)}
Take the square root of -45360.
x=\frac{-28±36\sqrt{35}i}{-206}
Multiply 2 times -103.
x=\frac{-28+36\sqrt{35}i}{-206}
Now solve the equation x=\frac{-28±36\sqrt{35}i}{-206} when ± is plus. Add -28 to 36i\sqrt{35}.
x=\frac{-18\sqrt{35}i+14}{103}
Divide -28+36i\sqrt{35} by -206.
x=\frac{-36\sqrt{35}i-28}{-206}
Now solve the equation x=\frac{-28±36\sqrt{35}i}{-206} when ± is minus. Subtract 36i\sqrt{35} from -28.
x=\frac{14+18\sqrt{35}i}{103}
Divide -28-36i\sqrt{35} by -206.
x=\frac{-18\sqrt{35}i+14}{103} x=\frac{14+18\sqrt{35}i}{103}
The equation is now solved.
-103x^{2}+28x=112
Add 28x to both sides.
\frac{-103x^{2}+28x}{-103}=\frac{112}{-103}
Divide both sides by -103.
x^{2}+\frac{28}{-103}x=\frac{112}{-103}
Dividing by -103 undoes the multiplication by -103.
x^{2}-\frac{28}{103}x=\frac{112}{-103}
Divide 28 by -103.
x^{2}-\frac{28}{103}x=-\frac{112}{103}
Divide 112 by -103.
x^{2}-\frac{28}{103}x+\left(-\frac{14}{103}\right)^{2}=-\frac{112}{103}+\left(-\frac{14}{103}\right)^{2}
Divide -\frac{28}{103}, the coefficient of the x term, by 2 to get -\frac{14}{103}. Then add the square of -\frac{14}{103} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{103}x+\frac{196}{10609}=-\frac{112}{103}+\frac{196}{10609}
Square -\frac{14}{103} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{103}x+\frac{196}{10609}=-\frac{11340}{10609}
Add -\frac{112}{103} to \frac{196}{10609} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{103}\right)^{2}=-\frac{11340}{10609}
Factor x^{2}-\frac{28}{103}x+\frac{196}{10609}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{103}\right)^{2}}=\sqrt{-\frac{11340}{10609}}
Take the square root of both sides of the equation.
x-\frac{14}{103}=\frac{18\sqrt{35}i}{103} x-\frac{14}{103}=-\frac{18\sqrt{35}i}{103}
Simplify.
x=\frac{14+18\sqrt{35}i}{103} x=\frac{-18\sqrt{35}i+14}{103}
Add \frac{14}{103} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}