Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+7x-7+15x^{2}-9
Combine -x and 8x to get 7x.
5x^{2}+7x-7-9
Combine -10x^{2} and 15x^{2} to get 5x^{2}.
5x^{2}+7x-16
Subtract 9 from -7 to get -16.
factor(-10x^{2}+7x-7+15x^{2}-9)
Combine -x and 8x to get 7x.
factor(5x^{2}+7x-7-9)
Combine -10x^{2} and 15x^{2} to get 5x^{2}.
factor(5x^{2}+7x-16)
Subtract 9 from -7 to get -16.
5x^{2}+7x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-16\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\times 5\left(-16\right)}}{2\times 5}
Square 7.
x=\frac{-7±\sqrt{49-20\left(-16\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-7±\sqrt{49+320}}{2\times 5}
Multiply -20 times -16.
x=\frac{-7±\sqrt{369}}{2\times 5}
Add 49 to 320.
x=\frac{-7±3\sqrt{41}}{2\times 5}
Take the square root of 369.
x=\frac{-7±3\sqrt{41}}{10}
Multiply 2 times 5.
x=\frac{3\sqrt{41}-7}{10}
Now solve the equation x=\frac{-7±3\sqrt{41}}{10} when ± is plus. Add -7 to 3\sqrt{41}.
x=\frac{-3\sqrt{41}-7}{10}
Now solve the equation x=\frac{-7±3\sqrt{41}}{10} when ± is minus. Subtract 3\sqrt{41} from -7.
5x^{2}+7x-16=5\left(x-\frac{3\sqrt{41}-7}{10}\right)\left(x-\frac{-3\sqrt{41}-7}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7+3\sqrt{41}}{10} for x_{1} and \frac{-7-3\sqrt{41}}{10} for x_{2}.