Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+4000x-30000=12000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+4000x-30000-12000=12000-12000
Subtract 12000 from both sides of the equation.
-10x^{2}+4000x-30000-12000=0
Subtracting 12000 from itself leaves 0.
-10x^{2}+4000x-42000=0
Subtract 12000 from -30000.
x=\frac{-4000±\sqrt{4000^{2}-4\left(-10\right)\left(-42000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 4000 for b, and -42000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4000±\sqrt{16000000-4\left(-10\right)\left(-42000\right)}}{2\left(-10\right)}
Square 4000.
x=\frac{-4000±\sqrt{16000000+40\left(-42000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-4000±\sqrt{16000000-1680000}}{2\left(-10\right)}
Multiply 40 times -42000.
x=\frac{-4000±\sqrt{14320000}}{2\left(-10\right)}
Add 16000000 to -1680000.
x=\frac{-4000±200\sqrt{358}}{2\left(-10\right)}
Take the square root of 14320000.
x=\frac{-4000±200\sqrt{358}}{-20}
Multiply 2 times -10.
x=\frac{200\sqrt{358}-4000}{-20}
Now solve the equation x=\frac{-4000±200\sqrt{358}}{-20} when ± is plus. Add -4000 to 200\sqrt{358}.
x=200-10\sqrt{358}
Divide -4000+200\sqrt{358} by -20.
x=\frac{-200\sqrt{358}-4000}{-20}
Now solve the equation x=\frac{-4000±200\sqrt{358}}{-20} when ± is minus. Subtract 200\sqrt{358} from -4000.
x=10\sqrt{358}+200
Divide -4000-200\sqrt{358} by -20.
x=200-10\sqrt{358} x=10\sqrt{358}+200
The equation is now solved.
-10x^{2}+4000x-30000=12000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}+4000x-30000-\left(-30000\right)=12000-\left(-30000\right)
Add 30000 to both sides of the equation.
-10x^{2}+4000x=12000-\left(-30000\right)
Subtracting -30000 from itself leaves 0.
-10x^{2}+4000x=42000
Subtract -30000 from 12000.
\frac{-10x^{2}+4000x}{-10}=\frac{42000}{-10}
Divide both sides by -10.
x^{2}+\frac{4000}{-10}x=\frac{42000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-400x=\frac{42000}{-10}
Divide 4000 by -10.
x^{2}-400x=-4200
Divide 42000 by -10.
x^{2}-400x+\left(-200\right)^{2}=-4200+\left(-200\right)^{2}
Divide -400, the coefficient of the x term, by 2 to get -200. Then add the square of -200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-400x+40000=-4200+40000
Square -200.
x^{2}-400x+40000=35800
Add -4200 to 40000.
\left(x-200\right)^{2}=35800
Factor x^{2}-400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-200\right)^{2}}=\sqrt{35800}
Take the square root of both sides of the equation.
x-200=10\sqrt{358} x-200=-10\sqrt{358}
Simplify.
x=10\sqrt{358}+200 x=200-10\sqrt{358}
Add 200 to both sides of the equation.