Solve for x
x=60
x=70
Graph
Share
Copied to clipboard
-10x^{2}+1300x-30000=12000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+1300x-30000-12000=12000-12000
Subtract 12000 from both sides of the equation.
-10x^{2}+1300x-30000-12000=0
Subtracting 12000 from itself leaves 0.
-10x^{2}+1300x-42000=0
Subtract 12000 from -30000.
x=\frac{-1300±\sqrt{1300^{2}-4\left(-10\right)\left(-42000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1300 for b, and -42000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1300±\sqrt{1690000-4\left(-10\right)\left(-42000\right)}}{2\left(-10\right)}
Square 1300.
x=\frac{-1300±\sqrt{1690000+40\left(-42000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1300±\sqrt{1690000-1680000}}{2\left(-10\right)}
Multiply 40 times -42000.
x=\frac{-1300±\sqrt{10000}}{2\left(-10\right)}
Add 1690000 to -1680000.
x=\frac{-1300±100}{2\left(-10\right)}
Take the square root of 10000.
x=\frac{-1300±100}{-20}
Multiply 2 times -10.
x=-\frac{1200}{-20}
Now solve the equation x=\frac{-1300±100}{-20} when ± is plus. Add -1300 to 100.
x=60
Divide -1200 by -20.
x=-\frac{1400}{-20}
Now solve the equation x=\frac{-1300±100}{-20} when ± is minus. Subtract 100 from -1300.
x=70
Divide -1400 by -20.
x=60 x=70
The equation is now solved.
-10x^{2}+1300x-30000=12000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}+1300x-30000-\left(-30000\right)=12000-\left(-30000\right)
Add 30000 to both sides of the equation.
-10x^{2}+1300x=12000-\left(-30000\right)
Subtracting -30000 from itself leaves 0.
-10x^{2}+1300x=42000
Subtract -30000 from 12000.
\frac{-10x^{2}+1300x}{-10}=\frac{42000}{-10}
Divide both sides by -10.
x^{2}+\frac{1300}{-10}x=\frac{42000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-130x=\frac{42000}{-10}
Divide 1300 by -10.
x^{2}-130x=-4200
Divide 42000 by -10.
x^{2}-130x+\left(-65\right)^{2}=-4200+\left(-65\right)^{2}
Divide -130, the coefficient of the x term, by 2 to get -65. Then add the square of -65 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-130x+4225=-4200+4225
Square -65.
x^{2}-130x+4225=25
Add -4200 to 4225.
\left(x-65\right)^{2}=25
Factor x^{2}-130x+4225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-65\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-65=5 x-65=-5
Simplify.
x=70 x=60
Add 65 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}