Solve for t
t=\frac{\sqrt{5}}{5}-\frac{1}{2}\approx -0.052786405
t=-\frac{\sqrt{5}}{5}-\frac{1}{2}\approx -0.947213595
Share
Copied to clipboard
-10t^{2}-10t-\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-10\right)\left(-\frac{1}{2}\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -10 for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±\sqrt{100-4\left(-10\right)\left(-\frac{1}{2}\right)}}{2\left(-10\right)}
Square -10.
t=\frac{-\left(-10\right)±\sqrt{100+40\left(-\frac{1}{2}\right)}}{2\left(-10\right)}
Multiply -4 times -10.
t=\frac{-\left(-10\right)±\sqrt{100-20}}{2\left(-10\right)}
Multiply 40 times -\frac{1}{2}.
t=\frac{-\left(-10\right)±\sqrt{80}}{2\left(-10\right)}
Add 100 to -20.
t=\frac{-\left(-10\right)±4\sqrt{5}}{2\left(-10\right)}
Take the square root of 80.
t=\frac{10±4\sqrt{5}}{2\left(-10\right)}
The opposite of -10 is 10.
t=\frac{10±4\sqrt{5}}{-20}
Multiply 2 times -10.
t=\frac{4\sqrt{5}+10}{-20}
Now solve the equation t=\frac{10±4\sqrt{5}}{-20} when ± is plus. Add 10 to 4\sqrt{5}.
t=-\frac{\sqrt{5}}{5}-\frac{1}{2}
Divide 10+4\sqrt{5} by -20.
t=\frac{10-4\sqrt{5}}{-20}
Now solve the equation t=\frac{10±4\sqrt{5}}{-20} when ± is minus. Subtract 4\sqrt{5} from 10.
t=\frac{\sqrt{5}}{5}-\frac{1}{2}
Divide 10-4\sqrt{5} by -20.
t=-\frac{\sqrt{5}}{5}-\frac{1}{2} t=\frac{\sqrt{5}}{5}-\frac{1}{2}
The equation is now solved.
-10t^{2}-10t-\frac{1}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10t^{2}-10t-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
Add \frac{1}{2} to both sides of the equation.
-10t^{2}-10t=-\left(-\frac{1}{2}\right)
Subtracting -\frac{1}{2} from itself leaves 0.
-10t^{2}-10t=\frac{1}{2}
Subtract -\frac{1}{2} from 0.
\frac{-10t^{2}-10t}{-10}=\frac{\frac{1}{2}}{-10}
Divide both sides by -10.
t^{2}+\left(-\frac{10}{-10}\right)t=\frac{\frac{1}{2}}{-10}
Dividing by -10 undoes the multiplication by -10.
t^{2}+t=\frac{\frac{1}{2}}{-10}
Divide -10 by -10.
t^{2}+t=-\frac{1}{20}
Divide \frac{1}{2} by -10.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=-\frac{1}{20}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+t+\frac{1}{4}=-\frac{1}{20}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+t+\frac{1}{4}=\frac{1}{5}
Add -\frac{1}{20} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{2}\right)^{2}=\frac{1}{5}
Factor t^{2}+t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{5}}
Take the square root of both sides of the equation.
t+\frac{1}{2}=\frac{\sqrt{5}}{5} t+\frac{1}{2}=-\frac{\sqrt{5}}{5}
Simplify.
t=\frac{\sqrt{5}}{5}-\frac{1}{2} t=-\frac{\sqrt{5}}{5}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}