Factor
-\left(10m-11\right)\left(m+5\right)
Evaluate
-\left(10m-11\right)\left(m+5\right)
Share
Copied to clipboard
a+b=-39 ab=-10\times 55=-550
Factor the expression by grouping. First, the expression needs to be rewritten as -10m^{2}+am+bm+55. To find a and b, set up a system to be solved.
1,-550 2,-275 5,-110 10,-55 11,-50 22,-25
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -550.
1-550=-549 2-275=-273 5-110=-105 10-55=-45 11-50=-39 22-25=-3
Calculate the sum for each pair.
a=11 b=-50
The solution is the pair that gives sum -39.
\left(-10m^{2}+11m\right)+\left(-50m+55\right)
Rewrite -10m^{2}-39m+55 as \left(-10m^{2}+11m\right)+\left(-50m+55\right).
-m\left(10m-11\right)-5\left(10m-11\right)
Factor out -m in the first and -5 in the second group.
\left(10m-11\right)\left(-m-5\right)
Factor out common term 10m-11 by using distributive property.
-10m^{2}-39m+55=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\left(-10\right)\times 55}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-39\right)±\sqrt{1521-4\left(-10\right)\times 55}}{2\left(-10\right)}
Square -39.
m=\frac{-\left(-39\right)±\sqrt{1521+40\times 55}}{2\left(-10\right)}
Multiply -4 times -10.
m=\frac{-\left(-39\right)±\sqrt{1521+2200}}{2\left(-10\right)}
Multiply 40 times 55.
m=\frac{-\left(-39\right)±\sqrt{3721}}{2\left(-10\right)}
Add 1521 to 2200.
m=\frac{-\left(-39\right)±61}{2\left(-10\right)}
Take the square root of 3721.
m=\frac{39±61}{2\left(-10\right)}
The opposite of -39 is 39.
m=\frac{39±61}{-20}
Multiply 2 times -10.
m=\frac{100}{-20}
Now solve the equation m=\frac{39±61}{-20} when ± is plus. Add 39 to 61.
m=-5
Divide 100 by -20.
m=-\frac{22}{-20}
Now solve the equation m=\frac{39±61}{-20} when ± is minus. Subtract 61 from 39.
m=\frac{11}{10}
Reduce the fraction \frac{-22}{-20} to lowest terms by extracting and canceling out 2.
-10m^{2}-39m+55=-10\left(m-\left(-5\right)\right)\left(m-\frac{11}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and \frac{11}{10} for x_{2}.
-10m^{2}-39m+55=-10\left(m+5\right)\left(m-\frac{11}{10}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-10m^{2}-39m+55=-10\left(m+5\right)\times \frac{-10m+11}{-10}
Subtract \frac{11}{10} from m by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-10m^{2}-39m+55=\left(m+5\right)\left(-10m+11\right)
Cancel out 10, the greatest common factor in -10 and 10.
x ^ 2 +\frac{39}{10}x -\frac{11}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{39}{10} rs = -\frac{11}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{39}{20} - u s = -\frac{39}{20} + u
Two numbers r and s sum up to -\frac{39}{10} exactly when the average of the two numbers is \frac{1}{2}*-\frac{39}{10} = -\frac{39}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{39}{20} - u) (-\frac{39}{20} + u) = -\frac{11}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{11}{2}
\frac{1521}{400} - u^2 = -\frac{11}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{11}{2}-\frac{1521}{400} = -\frac{3721}{400}
Simplify the expression by subtracting \frac{1521}{400} on both sides
u^2 = \frac{3721}{400} u = \pm\sqrt{\frac{3721}{400}} = \pm \frac{61}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{39}{20} - \frac{61}{20} = -5 s = -\frac{39}{20} + \frac{61}{20} = 1.100
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}