Solve for h
h=-\frac{14}{25}=-0.56
Share
Copied to clipboard
-10h-6=-\frac{2}{5}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
-10h=-\frac{2}{5}+6
Add 6 to both sides.
-10h=-\frac{2}{5}+\frac{30}{5}
Convert 6 to fraction \frac{30}{5}.
-10h=\frac{-2+30}{5}
Since -\frac{2}{5} and \frac{30}{5} have the same denominator, add them by adding their numerators.
-10h=\frac{28}{5}
Add -2 and 30 to get 28.
h=\frac{\frac{28}{5}}{-10}
Divide both sides by -10.
h=\frac{28}{5\left(-10\right)}
Express \frac{\frac{28}{5}}{-10} as a single fraction.
h=\frac{28}{-50}
Multiply 5 and -10 to get -50.
h=-\frac{14}{25}
Reduce the fraction \frac{28}{-50} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}