Solve for x
x=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
-10-19x=2-\left(3-20x+35+3\left(6x-11\right)\right)-\left(x-5\right)
Use the distributive property to multiply -5 by 4x-7.
-10-19x=2-\left(38-20x+3\left(6x-11\right)\right)-\left(x-5\right)
Add 3 and 35 to get 38.
-10-19x=2-\left(38-20x+18x-33\right)-\left(x-5\right)
Use the distributive property to multiply 3 by 6x-11.
-10-19x=2-\left(38-2x-33\right)-\left(x-5\right)
Combine -20x and 18x to get -2x.
-10-19x=2-\left(5-2x\right)-\left(x-5\right)
Subtract 33 from 38 to get 5.
-10-19x=2-5-\left(-2x\right)-\left(x-5\right)
To find the opposite of 5-2x, find the opposite of each term.
-10-19x=2-5+2x-\left(x-5\right)
The opposite of -2x is 2x.
-10-19x=-3+2x-\left(x-5\right)
Subtract 5 from 2 to get -3.
-10-19x=-3+2x-x-\left(-5\right)
To find the opposite of x-5, find the opposite of each term.
-10-19x=-3+2x-x+5
The opposite of -5 is 5.
-10-19x=-3+x+5
Combine 2x and -x to get x.
-10-19x=2+x
Add -3 and 5 to get 2.
-10-19x-x=2
Subtract x from both sides.
-10-20x=2
Combine -19x and -x to get -20x.
-20x=2+10
Add 10 to both sides.
-20x=12
Add 2 and 10 to get 12.
x=\frac{12}{-20}
Divide both sides by -20.
x=-\frac{3}{5}
Reduce the fraction \frac{12}{-20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}