Solve for s
s = \frac{19}{10} = 1\frac{9}{10} = 1.9
Share
Copied to clipboard
s+1=\frac{-29}{-10}
Divide both sides by -10.
s+1=\frac{29}{10}
Fraction \frac{-29}{-10} can be simplified to \frac{29}{10} by removing the negative sign from both the numerator and the denominator.
s=\frac{29}{10}-1
Subtract 1 from both sides.
s=\frac{29}{10}-\frac{10}{10}
Convert 1 to fraction \frac{10}{10}.
s=\frac{29-10}{10}
Since \frac{29}{10} and \frac{10}{10} have the same denominator, subtract them by subtracting their numerators.
s=\frac{19}{10}
Subtract 10 from 29 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}