Solve for a
a=-\sqrt{3}i-1\approx -1-1.732050808i
a=-1+\sqrt{3}i\approx -1+1.732050808i
Share
Copied to clipboard
\left(a+1\right)\left(-1\right)-a\left(a+1\right)=3
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
-a-1-a\left(a+1\right)=3
Use the distributive property to multiply a+1 by -1.
-a-1-a^{2}-a=3
Use the distributive property to multiply -a by a+1.
-2a-1-a^{2}=3
Combine -a and -a to get -2a.
-2a-1-a^{2}-3=0
Subtract 3 from both sides.
-2a-4-a^{2}=0
Subtract 3 from -1 to get -4.
-a^{2}-2a-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-2\right)±\sqrt{4-16}}{2\left(-1\right)}
Multiply 4 times -4.
a=\frac{-\left(-2\right)±\sqrt{-12}}{2\left(-1\right)}
Add 4 to -16.
a=\frac{-\left(-2\right)±2\sqrt{3}i}{2\left(-1\right)}
Take the square root of -12.
a=\frac{2±2\sqrt{3}i}{2\left(-1\right)}
The opposite of -2 is 2.
a=\frac{2±2\sqrt{3}i}{-2}
Multiply 2 times -1.
a=\frac{2+2\sqrt{3}i}{-2}
Now solve the equation a=\frac{2±2\sqrt{3}i}{-2} when ± is plus. Add 2 to 2i\sqrt{3}.
a=-\sqrt{3}i-1
Divide 2+2i\sqrt{3} by -2.
a=\frac{-2\sqrt{3}i+2}{-2}
Now solve the equation a=\frac{2±2\sqrt{3}i}{-2} when ± is minus. Subtract 2i\sqrt{3} from 2.
a=-1+\sqrt{3}i
Divide 2-2i\sqrt{3} by -2.
a=-\sqrt{3}i-1 a=-1+\sqrt{3}i
The equation is now solved.
\left(a+1\right)\left(-1\right)-a\left(a+1\right)=3
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
-a-1-a\left(a+1\right)=3
Use the distributive property to multiply a+1 by -1.
-a-1-a^{2}-a=3
Use the distributive property to multiply -a by a+1.
-2a-1-a^{2}=3
Combine -a and -a to get -2a.
-2a-a^{2}=3+1
Add 1 to both sides.
-2a-a^{2}=4
Add 3 and 1 to get 4.
-a^{2}-2a=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}-2a}{-1}=\frac{4}{-1}
Divide both sides by -1.
a^{2}+\left(-\frac{2}{-1}\right)a=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}+2a=\frac{4}{-1}
Divide -2 by -1.
a^{2}+2a=-4
Divide 4 by -1.
a^{2}+2a+1^{2}=-4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+2a+1=-4+1
Square 1.
a^{2}+2a+1=-3
Add -4 to 1.
\left(a+1\right)^{2}=-3
Factor a^{2}+2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+1\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
a+1=\sqrt{3}i a+1=-\sqrt{3}i
Simplify.
a=-1+\sqrt{3}i a=-\sqrt{3}i-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}