Solve for k
k=-\frac{q}{5}-\frac{1}{2}
Solve for q
q=-5k-\frac{5}{2}
Share
Copied to clipboard
-5=-3k+13k+q+q
Subtract 4 from -1 to get -5.
-5=10k+q+q
Combine -3k and 13k to get 10k.
-5=10k+2q
Combine q and q to get 2q.
10k+2q=-5
Swap sides so that all variable terms are on the left hand side.
10k=-5-2q
Subtract 2q from both sides.
10k=-2q-5
The equation is in standard form.
\frac{10k}{10}=\frac{-2q-5}{10}
Divide both sides by 10.
k=\frac{-2q-5}{10}
Dividing by 10 undoes the multiplication by 10.
k=-\frac{q}{5}-\frac{1}{2}
Divide -2q-5 by 10.
-5=-3k+13k+q+q
Subtract 4 from -1 to get -5.
-5=10k+q+q
Combine -3k and 13k to get 10k.
-5=10k+2q
Combine q and q to get 2q.
10k+2q=-5
Swap sides so that all variable terms are on the left hand side.
2q=-5-10k
Subtract 10k from both sides.
2q=-10k-5
The equation is in standard form.
\frac{2q}{2}=\frac{-10k-5}{2}
Divide both sides by 2.
q=\frac{-10k-5}{2}
Dividing by 2 undoes the multiplication by 2.
q=-5k-\frac{5}{2}
Divide -5-10k by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}