Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{2n}{2n}-\frac{3}{2n}-\frac{1}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1 times \frac{2n}{2n}.
\frac{-2n-3}{2n}-\frac{1}{6n^{2}}
Since -\frac{2n}{2n} and \frac{3}{2n} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-2n-3\right)\times 3n}{6n^{2}}-\frac{1}{6n^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2n and 6n^{2} is 6n^{2}. Multiply \frac{-2n-3}{2n} times \frac{3n}{3n}.
\frac{\left(-2n-3\right)\times 3n-1}{6n^{2}}
Since \frac{\left(-2n-3\right)\times 3n}{6n^{2}} and \frac{1}{6n^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-6n^{2}-9n-1}{6n^{2}}
Do the multiplications in \left(-2n-3\right)\times 3n-1.
\frac{-6\left(n-\left(-\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\right)\left(n-\left(\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\right)}{6n^{2}}
Factor the expressions that are not already factored in \frac{-6n^{2}-9n-1}{6n^{2}}.
\frac{-\left(n-\left(-\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\right)\left(n-\left(\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\right)}{n^{2}}
Cancel out 6 in both numerator and denominator.
\frac{-\left(n+\frac{1}{12}\sqrt{57}+\frac{3}{4}\right)\left(n-\left(\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\right)}{n^{2}}
To find the opposite of -\frac{1}{12}\sqrt{57}-\frac{3}{4}, find the opposite of each term.
\frac{-\left(n+\frac{1}{12}\sqrt{57}+\frac{3}{4}\right)\left(n-\frac{1}{12}\sqrt{57}+\frac{3}{4}\right)}{n^{2}}
To find the opposite of \frac{1}{12}\sqrt{57}-\frac{3}{4}, find the opposite of each term.
\frac{\left(-n-\frac{1}{12}\sqrt{57}-\frac{3}{4}\right)\left(n-\frac{1}{12}\sqrt{57}+\frac{3}{4}\right)}{n^{2}}
Use the distributive property to multiply -1 by n+\frac{1}{12}\sqrt{57}+\frac{3}{4}.
\frac{-n^{2}-\frac{3}{2}n+\frac{1}{144}\left(\sqrt{57}\right)^{2}-\frac{9}{16}}{n^{2}}
Use the distributive property to multiply -n-\frac{1}{12}\sqrt{57}-\frac{3}{4} by n-\frac{1}{12}\sqrt{57}+\frac{3}{4} and combine like terms.
\frac{-n^{2}-\frac{3}{2}n+\frac{1}{144}\times 57-\frac{9}{16}}{n^{2}}
The square of \sqrt{57} is 57.
\frac{-n^{2}-\frac{3}{2}n+\frac{19}{48}-\frac{9}{16}}{n^{2}}
Multiply \frac{1}{144} and 57 to get \frac{19}{48}.
\frac{-n^{2}-\frac{3}{2}n-\frac{1}{6}}{n^{2}}
Subtract \frac{9}{16} from \frac{19}{48} to get -\frac{1}{6}.