Evaluate
-\frac{11}{12}\approx -0.916666667
Factor
-\frac{11}{12} = -0.9166666666666666
Share
Copied to clipboard
-1-\left(-\frac{2}{4}+\frac{3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
-1-\left(\frac{-2+3}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Since -\frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-1-\left(\frac{1}{4}+-2+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Add -2 and 3 to get 1.
-1-\left(\frac{1}{4}+-\frac{12}{6}+\frac{5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Convert -2 to fraction -\frac{12}{6}.
-1-\left(\frac{1}{4}+\frac{-12+5}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Since -\frac{12}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-1\right)-\frac{1}{6}\right)-\frac{1}{3}
Add -12 and 5 to get -7.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(\frac{1}{3}-\frac{3}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
Convert 1 to fraction \frac{3}{3}.
-1-\left(\frac{1}{4}-\frac{7}{6}-\frac{1-3}{3}-\frac{1}{6}\right)-\frac{1}{3}
Since \frac{1}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
-1-\left(\frac{1}{4}+-\frac{7}{6}-\left(-\frac{2}{3}\right)-\frac{1}{6}\right)-\frac{1}{3}
Subtract 3 from 1 to get -2.
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{2}{3}-\frac{1}{6}\right)-\frac{1}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
-1-\left(\frac{1}{4}-\frac{7}{6}+\frac{4}{6}-\frac{1}{6}\right)-\frac{1}{3}
Least common multiple of 6 and 3 is 6. Convert -\frac{7}{6} and \frac{2}{3} to fractions with denominator 6.
-1-\left(\frac{1}{4}+\frac{-7+4}{6}-\frac{1}{6}\right)-\frac{1}{3}
Since -\frac{7}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
-1-\left(\frac{1}{4}+\frac{-3}{6}-\frac{1}{6}\right)-\frac{1}{3}
Add -7 and 4 to get -3.
-1-\left(\frac{1}{4}-\frac{1}{2}-\frac{1}{6}\right)-\frac{1}{3}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-1-\left(\frac{1}{4}-\frac{2}{4}-\frac{1}{6}\right)-\frac{1}{3}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
-1-\left(\frac{1-2}{4}-\frac{1}{6}\right)-\frac{1}{3}
Since \frac{1}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
-1-\left(-\frac{1}{4}-\frac{1}{6}\right)-\frac{1}{3}
Subtract 2 from 1 to get -1.
-1-\left(-\frac{3}{12}-\frac{2}{12}\right)-\frac{1}{3}
Least common multiple of 4 and 6 is 12. Convert -\frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
-1-\frac{-3-2}{12}-\frac{1}{3}
Since -\frac{3}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
-1-\left(-\frac{5}{12}\right)-\frac{1}{3}
Subtract 2 from -3 to get -5.
-1+\frac{5}{12}-\frac{1}{3}
The opposite of -\frac{5}{12} is \frac{5}{12}.
-\frac{12}{12}+\frac{5}{12}-\frac{1}{3}
Convert -1 to fraction -\frac{12}{12}.
\frac{-12+5}{12}-\frac{1}{3}
Since -\frac{12}{12} and \frac{5}{12} have the same denominator, add them by adding their numerators.
-\frac{7}{12}-\frac{1}{3}
Add -12 and 5 to get -7.
-\frac{7}{12}-\frac{4}{12}
Least common multiple of 12 and 3 is 12. Convert -\frac{7}{12} and \frac{1}{3} to fractions with denominator 12.
\frac{-7-4}{12}
Since -\frac{7}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{12}
Subtract 4 from -7 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}