Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

1-d^{2}=-8
Divide both sides by -1.
-d^{2}=-8-1
Subtract 1 from both sides.
-d^{2}=-9
Subtract 1 from -8 to get -9.
d^{2}=\frac{-9}{-1}
Divide both sides by -1.
d^{2}=9
Fraction \frac{-9}{-1} can be simplified to 9 by removing the negative sign from both the numerator and the denominator.
d=3 d=-3
Take the square root of both sides of the equation.
1-d^{2}=-8
Divide both sides by -1.
1-d^{2}+8=0
Add 8 to both sides.
9-d^{2}=0
Add 1 and 8 to get 9.
-d^{2}+9=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
d=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\left(-1\right)\times 9}}{2\left(-1\right)}
Square 0.
d=\frac{0±\sqrt{4\times 9}}{2\left(-1\right)}
Multiply -4 times -1.
d=\frac{0±\sqrt{36}}{2\left(-1\right)}
Multiply 4 times 9.
d=\frac{0±6}{2\left(-1\right)}
Take the square root of 36.
d=\frac{0±6}{-2}
Multiply 2 times -1.
d=-3
Now solve the equation d=\frac{0±6}{-2} when ± is plus. Divide 6 by -2.
d=3
Now solve the equation d=\frac{0±6}{-2} when ± is minus. Divide -6 by -2.
d=-3 d=3
The equation is now solved.