Verify
false
Share
Copied to clipboard
-1 {(\frac{8}{17})} + 0.010471784116245792 ^ {-1} = 0.015809970989745313 ^ {-1}
Evaluate trigonometric functions in the problem
-\frac{8}{17}+0.010471784116245792^{-1}=0.015809970989745313^{-1}
Multiply -1 and \frac{8}{17} to get -\frac{8}{17}.
-\frac{8}{17}+\frac{31250000000000000}{327243253632681}=0.015809970989745313^{-1}
Calculate 0.010471784116245792 to the power of -1 and get \frac{31250000000000000}{327243253632681}.
\frac{528632053970938552}{5563135311755577}=0.015809970989745313^{-1}
Add -\frac{8}{17} and \frac{31250000000000000}{327243253632681} to get \frac{528632053970938552}{5563135311755577}.
\frac{528632053970938552}{5563135311755577}=\frac{1000000000000000000}{15809970989745313}
Calculate 0.015809970989745313 to the power of -1 and get \frac{1000000000000000000}{15809970989745313}.
\frac{8357657437530017098262910053006776}{87953007890883420097566137360601}=\frac{5563135311755577000000000000000000}{87953007890883420097566137360601}
Least common multiple of 5563135311755577 and 15809970989745313 is 87953007890883420097566137360601. Convert \frac{528632053970938552}{5563135311755577} and \frac{1000000000000000000}{15809970989745313} to fractions with denominator 87953007890883420097566137360601.
\text{false}
Compare \frac{8357657437530017098262910053006776}{87953007890883420097566137360601} and \frac{5563135311755577000000000000000000}{87953007890883420097566137360601}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}