Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(-\frac{3+2}{3}\right)x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Multiply 1 and 3 to get 3.
\frac{-\frac{5}{3}x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Add 3 and 2 to get 5.
\frac{-\frac{5}{3}x\left(\frac{1}{2}-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{5}{3}x\left(\frac{3}{6}-\frac{4}{6}\right)}{\frac{1\times 9+2}{9}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{-\frac{5}{3}x\times \frac{3-4}{6}}{\frac{1\times 9+2}{9}}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{3}x\left(-\frac{1}{6}\right)}{\frac{1\times 9+2}{9}}
Subtract 4 from 3 to get -1.
\frac{\frac{-5\left(-1\right)}{3\times 6}x}{\frac{1\times 9+2}{9}}
Multiply -\frac{5}{3} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{18}x}{\frac{1\times 9+2}{9}}
Do the multiplications in the fraction \frac{-5\left(-1\right)}{3\times 6}.
\frac{\frac{5}{18}x}{\frac{9+2}{9}}
Multiply 1 and 9 to get 9.
\frac{\frac{5}{18}x}{\frac{11}{9}}
Add 9 and 2 to get 11.
\frac{\frac{5}{18}x\times 9}{11}
Divide \frac{5}{18}x by \frac{11}{9} by multiplying \frac{5}{18}x by the reciprocal of \frac{11}{9}.
\frac{\frac{5\times 9}{18}x}{11}
Express \frac{5}{18}\times 9 as a single fraction.
\frac{\frac{45}{18}x}{11}
Multiply 5 and 9 to get 45.
\frac{\frac{5}{2}x}{11}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{22}x
Divide \frac{5}{2}x by 11 to get \frac{5}{22}x.
\frac{\left(-\frac{3+2}{3}\right)x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Multiply 1 and 3 to get 3.
\frac{-\frac{5}{3}x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Add 3 and 2 to get 5.
\frac{-\frac{5}{3}x\left(\frac{1}{2}-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{5}{3}x\left(\frac{3}{6}-\frac{4}{6}\right)}{\frac{1\times 9+2}{9}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{-\frac{5}{3}x\times \frac{3-4}{6}}{\frac{1\times 9+2}{9}}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{3}x\left(-\frac{1}{6}\right)}{\frac{1\times 9+2}{9}}
Subtract 4 from 3 to get -1.
\frac{\frac{-5\left(-1\right)}{3\times 6}x}{\frac{1\times 9+2}{9}}
Multiply -\frac{5}{3} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{18}x}{\frac{1\times 9+2}{9}}
Do the multiplications in the fraction \frac{-5\left(-1\right)}{3\times 6}.
\frac{\frac{5}{18}x}{\frac{9+2}{9}}
Multiply 1 and 9 to get 9.
\frac{\frac{5}{18}x}{\frac{11}{9}}
Add 9 and 2 to get 11.
\frac{\frac{5}{18}x\times 9}{11}
Divide \frac{5}{18}x by \frac{11}{9} by multiplying \frac{5}{18}x by the reciprocal of \frac{11}{9}.
\frac{\frac{5\times 9}{18}x}{11}
Express \frac{5}{18}\times 9 as a single fraction.
\frac{\frac{45}{18}x}{11}
Multiply 5 and 9 to get 45.
\frac{\frac{5}{2}x}{11}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{22}x
Divide \frac{5}{2}x by 11 to get \frac{5}{22}x.