Evaluate
\frac{5x}{22}
Expand
\frac{5x}{22}
Graph
Share
Copied to clipboard
\frac{\left(-\frac{3+2}{3}\right)x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Multiply 1 and 3 to get 3.
\frac{-\frac{5}{3}x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Add 3 and 2 to get 5.
\frac{-\frac{5}{3}x\left(\frac{1}{2}-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{5}{3}x\left(\frac{3}{6}-\frac{4}{6}\right)}{\frac{1\times 9+2}{9}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{-\frac{5}{3}x\times \frac{3-4}{6}}{\frac{1\times 9+2}{9}}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{3}x\left(-\frac{1}{6}\right)}{\frac{1\times 9+2}{9}}
Subtract 4 from 3 to get -1.
\frac{\frac{-5\left(-1\right)}{3\times 6}x}{\frac{1\times 9+2}{9}}
Multiply -\frac{5}{3} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{18}x}{\frac{1\times 9+2}{9}}
Do the multiplications in the fraction \frac{-5\left(-1\right)}{3\times 6}.
\frac{\frac{5}{18}x}{\frac{9+2}{9}}
Multiply 1 and 9 to get 9.
\frac{\frac{5}{18}x}{\frac{11}{9}}
Add 9 and 2 to get 11.
\frac{\frac{5}{18}x\times 9}{11}
Divide \frac{5}{18}x by \frac{11}{9} by multiplying \frac{5}{18}x by the reciprocal of \frac{11}{9}.
\frac{\frac{5\times 9}{18}x}{11}
Express \frac{5}{18}\times 9 as a single fraction.
\frac{\frac{45}{18}x}{11}
Multiply 5 and 9 to get 45.
\frac{\frac{5}{2}x}{11}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{22}x
Divide \frac{5}{2}x by 11 to get \frac{5}{22}x.
\frac{\left(-\frac{3+2}{3}\right)x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Multiply 1 and 3 to get 3.
\frac{-\frac{5}{3}x\left(0.5-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Add 3 and 2 to get 5.
\frac{-\frac{5}{3}x\left(\frac{1}{2}-\frac{2}{3}\right)}{\frac{1\times 9+2}{9}}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{5}{3}x\left(\frac{3}{6}-\frac{4}{6}\right)}{\frac{1\times 9+2}{9}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{-\frac{5}{3}x\times \frac{3-4}{6}}{\frac{1\times 9+2}{9}}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{3}x\left(-\frac{1}{6}\right)}{\frac{1\times 9+2}{9}}
Subtract 4 from 3 to get -1.
\frac{\frac{-5\left(-1\right)}{3\times 6}x}{\frac{1\times 9+2}{9}}
Multiply -\frac{5}{3} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{18}x}{\frac{1\times 9+2}{9}}
Do the multiplications in the fraction \frac{-5\left(-1\right)}{3\times 6}.
\frac{\frac{5}{18}x}{\frac{9+2}{9}}
Multiply 1 and 9 to get 9.
\frac{\frac{5}{18}x}{\frac{11}{9}}
Add 9 and 2 to get 11.
\frac{\frac{5}{18}x\times 9}{11}
Divide \frac{5}{18}x by \frac{11}{9} by multiplying \frac{5}{18}x by the reciprocal of \frac{11}{9}.
\frac{\frac{5\times 9}{18}x}{11}
Express \frac{5}{18}\times 9 as a single fraction.
\frac{\frac{45}{18}x}{11}
Multiply 5 and 9 to get 45.
\frac{\frac{5}{2}x}{11}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{22}x
Divide \frac{5}{2}x by 11 to get \frac{5}{22}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}