- 1 \frac { 1 } { 2 } = \frac { 3 } { 4 } \times ( - 02 ) \times ( \frac { 3 } { 4 } \div 14 \times ( - \frac { 3 } { 5 } )
Verify
false
Share
Copied to clipboard
-70\left(2+1\right)=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Multiply both sides of the equation by 140, the least common multiple of 2,4,14,5.
-70\times 3=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Add 2 and 1 to get 3.
-210=\frac{15}{2}\left(-2\right)\times \frac{3}{4}\left(-\frac{3}{5}\right)
Multiply -70 and 3 to get -210.
-210=\frac{15\left(-2\right)}{2}\times \frac{3}{4}\left(-\frac{3}{5}\right)
Express \frac{15}{2}\left(-2\right) as a single fraction.
-210=\frac{-30}{2}\times \frac{3}{4}\left(-\frac{3}{5}\right)
Multiply 15 and -2 to get -30.
-210=-15\times \frac{3}{4}\left(-\frac{3}{5}\right)
Divide -30 by 2 to get -15.
-210=\frac{-15\times 3}{4}\left(-\frac{3}{5}\right)
Express -15\times \frac{3}{4} as a single fraction.
-210=\frac{-45}{4}\left(-\frac{3}{5}\right)
Multiply -15 and 3 to get -45.
-210=-\frac{45}{4}\left(-\frac{3}{5}\right)
Fraction \frac{-45}{4} can be rewritten as -\frac{45}{4} by extracting the negative sign.
-210=\frac{-45\left(-3\right)}{4\times 5}
Multiply -\frac{45}{4} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
-210=\frac{135}{20}
Do the multiplications in the fraction \frac{-45\left(-3\right)}{4\times 5}.
-210=\frac{27}{4}
Reduce the fraction \frac{135}{20} to lowest terms by extracting and canceling out 5.
-\frac{840}{4}=\frac{27}{4}
Convert -210 to fraction -\frac{840}{4}.
\text{false}
Compare -\frac{840}{4} and \frac{27}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}