Evaluate
-\frac{13}{4}=-3.25
Factor
-\frac{13}{4} = -3\frac{1}{4} = -3.25
Share
Copied to clipboard
-\frac{1}{2}\times \frac{1}{2}-\frac{1}{6}\left(3-\left(-3\right)\right)-|-2|
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{-1}{2\times 2}-\frac{1}{6}\left(3-\left(-3\right)\right)-|-2|
Multiply -\frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{4}-\frac{1}{6}\left(3-\left(-3\right)\right)-|-2|
Do the multiplications in the fraction \frac{-1}{2\times 2}.
-\frac{1}{4}-\frac{1}{6}\left(3-\left(-3\right)\right)-|-2|
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{1}{4}-\frac{1}{6}\left(3+3\right)-|-2|
The opposite of -3 is 3.
-\frac{1}{4}-\frac{1}{6}\times 6-|-2|
Add 3 and 3 to get 6.
-\frac{1}{4}-1-|-2|
Cancel out 6 and 6.
-\frac{1}{4}-\frac{4}{4}-|-2|
Convert 1 to fraction \frac{4}{4}.
\frac{-1-4}{4}-|-2|
Since -\frac{1}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{4}-|-2|
Subtract 4 from -1 to get -5.
-\frac{5}{4}-2
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -2 is 2.
-\frac{5}{4}-\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{-5-8}{4}
Since -\frac{5}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{4}
Subtract 8 from -5 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}