Evaluate
\frac{2}{3}\approx 0.666666667
Factor
\frac{2}{3} = 0.6666666666666666
Share
Copied to clipboard
-\frac{3}{2}-\left(\sqrt{25}-\left(-\frac{1}{3}\times \frac{5}{2}\right)-\sqrt{64}\right)
Divide -1 by \frac{2}{3} by multiplying -1 by the reciprocal of \frac{2}{3}.
-\frac{3}{2}-\left(5-\left(-\frac{1}{3}\times \frac{5}{2}\right)-\sqrt{64}\right)
Calculate the square root of 25 and get 5.
-\frac{3}{2}-\left(5-\frac{-5}{3\times 2}-\sqrt{64}\right)
Multiply -\frac{1}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{2}-\left(5-\frac{-5}{6}-\sqrt{64}\right)
Do the multiplications in the fraction \frac{-5}{3\times 2}.
-\frac{3}{2}-\left(5-\left(-\frac{5}{6}\right)-\sqrt{64}\right)
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
-\frac{3}{2}-\left(5+\frac{5}{6}-\sqrt{64}\right)
The opposite of -\frac{5}{6} is \frac{5}{6}.
-\frac{3}{2}-\left(\frac{30}{6}+\frac{5}{6}-\sqrt{64}\right)
Convert 5 to fraction \frac{30}{6}.
-\frac{3}{2}-\left(\frac{30+5}{6}-\sqrt{64}\right)
Since \frac{30}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
-\frac{3}{2}-\left(\frac{35}{6}-\sqrt{64}\right)
Add 30 and 5 to get 35.
-\frac{3}{2}-\left(\frac{35}{6}-8\right)
Calculate the square root of 64 and get 8.
-\frac{3}{2}-\left(\frac{35}{6}-\frac{48}{6}\right)
Convert 8 to fraction \frac{48}{6}.
-\frac{3}{2}-\frac{35-48}{6}
Since \frac{35}{6} and \frac{48}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{2}-\left(-\frac{13}{6}\right)
Subtract 48 from 35 to get -13.
-\frac{3}{2}+\frac{13}{6}
The opposite of -\frac{13}{6} is \frac{13}{6}.
-\frac{9}{6}+\frac{13}{6}
Least common multiple of 2 and 6 is 6. Convert -\frac{3}{2} and \frac{13}{6} to fractions with denominator 6.
\frac{-9+13}{6}
Since -\frac{9}{6} and \frac{13}{6} have the same denominator, add them by adding their numerators.
\frac{4}{6}
Add -9 and 13 to get 4.
\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}