Solve for x
x=\frac{\sqrt{93}}{6}+\frac{1}{2}\approx 2.107275127
x=-\frac{\sqrt{93}}{6}+\frac{1}{2}\approx -1.107275127
Graph
Share
Copied to clipboard
-1=3x^{2}-4x-8+x
Use the distributive property to multiply -4 by x+2.
-1=3x^{2}-3x-8
Combine -4x and x to get -3x.
3x^{2}-3x-8=-1
Swap sides so that all variable terms are on the left hand side.
3x^{2}-3x-8+1=0
Add 1 to both sides.
3x^{2}-3x-7=0
Add -8 and 1 to get -7.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-7\right)}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-7\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9+84}}{2\times 3}
Multiply -12 times -7.
x=\frac{-\left(-3\right)±\sqrt{93}}{2\times 3}
Add 9 to 84.
x=\frac{3±\sqrt{93}}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±\sqrt{93}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{93}+3}{6}
Now solve the equation x=\frac{3±\sqrt{93}}{6} when ± is plus. Add 3 to \sqrt{93}.
x=\frac{\sqrt{93}}{6}+\frac{1}{2}
Divide 3+\sqrt{93} by 6.
x=\frac{3-\sqrt{93}}{6}
Now solve the equation x=\frac{3±\sqrt{93}}{6} when ± is minus. Subtract \sqrt{93} from 3.
x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
Divide 3-\sqrt{93} by 6.
x=\frac{\sqrt{93}}{6}+\frac{1}{2} x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
The equation is now solved.
-1=3x^{2}-4x-8+x
Use the distributive property to multiply -4 by x+2.
-1=3x^{2}-3x-8
Combine -4x and x to get -3x.
3x^{2}-3x-8=-1
Swap sides so that all variable terms are on the left hand side.
3x^{2}-3x=-1+8
Add 8 to both sides.
3x^{2}-3x=7
Add -1 and 8 to get 7.
\frac{3x^{2}-3x}{3}=\frac{7}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{7}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=\frac{7}{3}
Divide -3 by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{7}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{7}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{31}{12}
Add \frac{7}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{31}{12}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{93}}{6} x-\frac{1}{2}=-\frac{\sqrt{93}}{6}
Simplify.
x=\frac{\sqrt{93}}{6}+\frac{1}{2} x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}