Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-1=-\frac{1}{3}\left(x^{2}-6x+9\right)+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-1=-\frac{1}{3}x^{2}+2x-3+3
Use the distributive property to multiply -\frac{1}{3} by x^{2}-6x+9.
-1=-\frac{1}{3}x^{2}+2x
Add -3 and 3 to get 0.
-\frac{1}{3}x^{2}+2x=-1
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}x^{2}+2x+1=0
Add 1 to both sides.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{3}\right)}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{3}\right)}}{2\left(-\frac{1}{3}\right)}
Square 2.
x=\frac{-2±\sqrt{4+\frac{4}{3}}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-2±\sqrt{\frac{16}{3}}}{2\left(-\frac{1}{3}\right)}
Add 4 to \frac{4}{3}.
x=\frac{-2±\frac{4\sqrt{3}}{3}}{2\left(-\frac{1}{3}\right)}
Take the square root of \frac{16}{3}.
x=\frac{-2±\frac{4\sqrt{3}}{3}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{\frac{4\sqrt{3}}{3}-2}{-\frac{2}{3}}
Now solve the equation x=\frac{-2±\frac{4\sqrt{3}}{3}}{-\frac{2}{3}} when ± is plus. Add -2 to \frac{4\sqrt{3}}{3}.
x=3-2\sqrt{3}
Divide -2+\frac{4\sqrt{3}}{3} by -\frac{2}{3} by multiplying -2+\frac{4\sqrt{3}}{3} by the reciprocal of -\frac{2}{3}.
x=\frac{-\frac{4\sqrt{3}}{3}-2}{-\frac{2}{3}}
Now solve the equation x=\frac{-2±\frac{4\sqrt{3}}{3}}{-\frac{2}{3}} when ± is minus. Subtract \frac{4\sqrt{3}}{3} from -2.
x=2\sqrt{3}+3
Divide -2-\frac{4\sqrt{3}}{3} by -\frac{2}{3} by multiplying -2-\frac{4\sqrt{3}}{3} by the reciprocal of -\frac{2}{3}.
x=3-2\sqrt{3} x=2\sqrt{3}+3
The equation is now solved.
-1=-\frac{1}{3}\left(x^{2}-6x+9\right)+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-1=-\frac{1}{3}x^{2}+2x-3+3
Use the distributive property to multiply -\frac{1}{3} by x^{2}-6x+9.
-1=-\frac{1}{3}x^{2}+2x
Add -3 and 3 to get 0.
-\frac{1}{3}x^{2}+2x=-1
Swap sides so that all variable terms are on the left hand side.
\frac{-\frac{1}{3}x^{2}+2x}{-\frac{1}{3}}=-\frac{1}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\frac{2}{-\frac{1}{3}}x=-\frac{1}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}-6x=-\frac{1}{-\frac{1}{3}}
Divide 2 by -\frac{1}{3} by multiplying 2 by the reciprocal of -\frac{1}{3}.
x^{2}-6x=3
Divide -1 by -\frac{1}{3} by multiplying -1 by the reciprocal of -\frac{1}{3}.
x^{2}-6x+\left(-3\right)^{2}=3+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=3+9
Square -3.
x^{2}-6x+9=12
Add 3 to 9.
\left(x-3\right)^{2}=12
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-3=2\sqrt{3} x-3=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
Add 3 to both sides of the equation.