Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-1=-\frac{1}{2}\left(9+6a+a^{2}\right)+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+a\right)^{2}.
-1=-\frac{9}{2}-3a-\frac{1}{2}a^{2}+2
Use the distributive property to multiply -\frac{1}{2} by 9+6a+a^{2}.
-1=-\frac{5}{2}-3a-\frac{1}{2}a^{2}
Add -\frac{9}{2} and 2 to get -\frac{5}{2}.
-\frac{5}{2}-3a-\frac{1}{2}a^{2}=-1
Swap sides so that all variable terms are on the left hand side.
-\frac{5}{2}-3a-\frac{1}{2}a^{2}+1=0
Add 1 to both sides.
-\frac{3}{2}-3a-\frac{1}{2}a^{2}=0
Add -\frac{5}{2} and 1 to get -\frac{3}{2}.
-\frac{1}{2}a^{2}-3a-\frac{3}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -3 for b, and -\frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Square -3.
a=\frac{-\left(-3\right)±\sqrt{9+2\left(-\frac{3}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
a=\frac{-\left(-3\right)±\sqrt{9-3}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -\frac{3}{2}.
a=\frac{-\left(-3\right)±\sqrt{6}}{2\left(-\frac{1}{2}\right)}
Add 9 to -3.
a=\frac{3±\sqrt{6}}{2\left(-\frac{1}{2}\right)}
The opposite of -3 is 3.
a=\frac{3±\sqrt{6}}{-1}
Multiply 2 times -\frac{1}{2}.
a=\frac{\sqrt{6}+3}{-1}
Now solve the equation a=\frac{3±\sqrt{6}}{-1} when ± is plus. Add 3 to \sqrt{6}.
a=-\left(\sqrt{6}+3\right)
Divide 3+\sqrt{6} by -1.
a=\frac{3-\sqrt{6}}{-1}
Now solve the equation a=\frac{3±\sqrt{6}}{-1} when ± is minus. Subtract \sqrt{6} from 3.
a=\sqrt{6}-3
Divide 3-\sqrt{6} by -1.
a=-\left(\sqrt{6}+3\right) a=\sqrt{6}-3
The equation is now solved.
-1=-\frac{1}{2}\left(9+6a+a^{2}\right)+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+a\right)^{2}.
-1=-\frac{9}{2}-3a-\frac{1}{2}a^{2}+2
Use the distributive property to multiply -\frac{1}{2} by 9+6a+a^{2}.
-1=-\frac{5}{2}-3a-\frac{1}{2}a^{2}
Add -\frac{9}{2} and 2 to get -\frac{5}{2}.
-\frac{5}{2}-3a-\frac{1}{2}a^{2}=-1
Swap sides so that all variable terms are on the left hand side.
-3a-\frac{1}{2}a^{2}=-1+\frac{5}{2}
Add \frac{5}{2} to both sides.
-3a-\frac{1}{2}a^{2}=\frac{3}{2}
Add -1 and \frac{5}{2} to get \frac{3}{2}.
-\frac{1}{2}a^{2}-3a=\frac{3}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}a^{2}-3a}{-\frac{1}{2}}=\frac{\frac{3}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
a^{2}+\left(-\frac{3}{-\frac{1}{2}}\right)a=\frac{\frac{3}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
a^{2}+6a=\frac{\frac{3}{2}}{-\frac{1}{2}}
Divide -3 by -\frac{1}{2} by multiplying -3 by the reciprocal of -\frac{1}{2}.
a^{2}+6a=-3
Divide \frac{3}{2} by -\frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{2}.
a^{2}+6a+3^{2}=-3+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+6a+9=-3+9
Square 3.
a^{2}+6a+9=6
Add -3 to 9.
\left(a+3\right)^{2}=6
Factor a^{2}+6a+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
a+3=\sqrt{6} a+3=-\sqrt{6}
Simplify.
a=\sqrt{6}-3 a=-\sqrt{6}-3
Subtract 3 from both sides of the equation.