Solve for t
t\geq -2
Share
Copied to clipboard
-1+0.3t-0.7t\leq -0.2
Subtract 0.7t from both sides.
-1-0.4t\leq -0.2
Combine 0.3t and -0.7t to get -0.4t.
-0.4t\leq -0.2+1
Add 1 to both sides.
-0.4t\leq 0.8
Add -0.2 and 1 to get 0.8.
t\geq \frac{0.8}{-0.4}
Divide both sides by -0.4. Since -0.4 is negative, the inequality direction is changed.
t\geq \frac{8}{-4}
Expand \frac{0.8}{-0.4} by multiplying both numerator and the denominator by 10.
t\geq -2
Divide 8 by -4 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}