Solve for x
x=-\frac{4y}{5}+3
Solve for y
y=\frac{15-5x}{4}
Graph
Share
Copied to clipboard
\frac{1}{3}x=-\frac{4}{15}y+1
Add 1 to both sides.
\frac{1}{3}x=-\frac{4y}{15}+1
The equation is in standard form.
\frac{\frac{1}{3}x}{\frac{1}{3}}=\frac{-\frac{4y}{15}+1}{\frac{1}{3}}
Multiply both sides by 3.
x=\frac{-\frac{4y}{15}+1}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x=-\frac{4y}{5}+3
Divide -\frac{4y}{15}+1 by \frac{1}{3} by multiplying -\frac{4y}{15}+1 by the reciprocal of \frac{1}{3}.
-\frac{4}{15}y=-1+\frac{1}{3}x
Swap sides so that all variable terms are on the left hand side.
-\frac{4}{15}y=\frac{x}{3}-1
The equation is in standard form.
\frac{-\frac{4}{15}y}{-\frac{4}{15}}=\frac{\frac{x}{3}-1}{-\frac{4}{15}}
Divide both sides of the equation by -\frac{4}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{x}{3}-1}{-\frac{4}{15}}
Dividing by -\frac{4}{15} undoes the multiplication by -\frac{4}{15}.
y=\frac{15-5x}{4}
Divide -1+\frac{x}{3} by -\frac{4}{15} by multiplying -1+\frac{x}{3} by the reciprocal of -\frac{4}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}