Evaluate
-\frac{25}{4}=-6.25
Factor
-\frac{25}{4} = -6\frac{1}{4} = -6.25
Share
Copied to clipboard
0\times 25+\frac{1}{4}-|-2^{2}-4|-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Calculate 5 to the power of 2 and get 25.
0+\frac{1}{4}-|-2^{2}-4|-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Multiply 0 and 25 to get 0.
\frac{1}{4}-|-2^{2}-4|-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Add 0 and \frac{1}{4} to get \frac{1}{4}.
\frac{1}{4}-|-4-4|-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}-|-8|-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Subtract 4 from -4 to get -8.
\frac{1}{4}-8-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -8 is 8.
-\frac{31}{4}-\left(-\frac{1\times 2+1}{2}\right)^{3}\times \frac{4}{9}
Subtract 8 from \frac{1}{4} to get -\frac{31}{4}.
-\frac{31}{4}-\left(-\frac{2+1}{2}\right)^{3}\times \frac{4}{9}
Multiply 1 and 2 to get 2.
-\frac{31}{4}-\left(-\frac{3}{2}\right)^{3}\times \frac{4}{9}
Add 2 and 1 to get 3.
-\frac{31}{4}-\left(-\frac{27}{8}\times \frac{4}{9}\right)
Calculate -\frac{3}{2} to the power of 3 and get -\frac{27}{8}.
-\frac{31}{4}-\left(-\frac{3}{2}\right)
Multiply -\frac{27}{8} and \frac{4}{9} to get -\frac{3}{2}.
-\frac{31}{4}+\frac{3}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
-\frac{25}{4}
Add -\frac{31}{4} and \frac{3}{2} to get -\frac{25}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}