Solve for x
x=\frac{25\sqrt{301}}{7}+75\approx 136.961969903
x=-\frac{25\sqrt{301}}{7}+75\approx 13.038030097
Graph
Share
Copied to clipboard
-0.7x^{2}+105x-1250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-105±\sqrt{105^{2}-4\left(-0.7\right)\left(-1250\right)}}{2\left(-0.7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.7 for a, 105 for b, and -1250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-105±\sqrt{11025-4\left(-0.7\right)\left(-1250\right)}}{2\left(-0.7\right)}
Square 105.
x=\frac{-105±\sqrt{11025+2.8\left(-1250\right)}}{2\left(-0.7\right)}
Multiply -4 times -0.7.
x=\frac{-105±\sqrt{11025-3500}}{2\left(-0.7\right)}
Multiply 2.8 times -1250.
x=\frac{-105±\sqrt{7525}}{2\left(-0.7\right)}
Add 11025 to -3500.
x=\frac{-105±5\sqrt{301}}{2\left(-0.7\right)}
Take the square root of 7525.
x=\frac{-105±5\sqrt{301}}{-1.4}
Multiply 2 times -0.7.
x=\frac{5\sqrt{301}-105}{-1.4}
Now solve the equation x=\frac{-105±5\sqrt{301}}{-1.4} when ± is plus. Add -105 to 5\sqrt{301}.
x=-\frac{25\sqrt{301}}{7}+75
Divide -105+5\sqrt{301} by -1.4 by multiplying -105+5\sqrt{301} by the reciprocal of -1.4.
x=\frac{-5\sqrt{301}-105}{-1.4}
Now solve the equation x=\frac{-105±5\sqrt{301}}{-1.4} when ± is minus. Subtract 5\sqrt{301} from -105.
x=\frac{25\sqrt{301}}{7}+75
Divide -105-5\sqrt{301} by -1.4 by multiplying -105-5\sqrt{301} by the reciprocal of -1.4.
x=-\frac{25\sqrt{301}}{7}+75 x=\frac{25\sqrt{301}}{7}+75
The equation is now solved.
-0.7x^{2}+105x-1250=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.7x^{2}+105x-1250-\left(-1250\right)=-\left(-1250\right)
Add 1250 to both sides of the equation.
-0.7x^{2}+105x=-\left(-1250\right)
Subtracting -1250 from itself leaves 0.
-0.7x^{2}+105x=1250
Subtract -1250 from 0.
\frac{-0.7x^{2}+105x}{-0.7}=\frac{1250}{-0.7}
Divide both sides of the equation by -0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{105}{-0.7}x=\frac{1250}{-0.7}
Dividing by -0.7 undoes the multiplication by -0.7.
x^{2}-150x=\frac{1250}{-0.7}
Divide 105 by -0.7 by multiplying 105 by the reciprocal of -0.7.
x^{2}-150x=-\frac{12500}{7}
Divide 1250 by -0.7 by multiplying 1250 by the reciprocal of -0.7.
x^{2}-150x+\left(-75\right)^{2}=-\frac{12500}{7}+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-150x+5625=-\frac{12500}{7}+5625
Square -75.
x^{2}-150x+5625=\frac{26875}{7}
Add -\frac{12500}{7} to 5625.
\left(x-75\right)^{2}=\frac{26875}{7}
Factor x^{2}-150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-75\right)^{2}}=\sqrt{\frac{26875}{7}}
Take the square root of both sides of the equation.
x-75=\frac{25\sqrt{301}}{7} x-75=-\frac{25\sqrt{301}}{7}
Simplify.
x=\frac{25\sqrt{301}}{7}+75 x=-\frac{25\sqrt{301}}{7}+75
Add 75 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}