Solve for t
t = \frac{5 \sqrt{201} + 65}{8} \approx 16.985904299
t=\frac{65-5\sqrt{201}}{8}\approx -0.735904299
Share
Copied to clipboard
-0.4t^{2}+6.5t+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6.5±\sqrt{6.5^{2}-4\left(-0.4\right)\times 5}}{2\left(-0.4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.4 for a, 6.5 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6.5±\sqrt{42.25-4\left(-0.4\right)\times 5}}{2\left(-0.4\right)}
Square 6.5 by squaring both the numerator and the denominator of the fraction.
t=\frac{-6.5±\sqrt{42.25+1.6\times 5}}{2\left(-0.4\right)}
Multiply -4 times -0.4.
t=\frac{-6.5±\sqrt{42.25+8}}{2\left(-0.4\right)}
Multiply 1.6 times 5.
t=\frac{-6.5±\sqrt{50.25}}{2\left(-0.4\right)}
Add 42.25 to 8.
t=\frac{-6.5±\frac{\sqrt{201}}{2}}{2\left(-0.4\right)}
Take the square root of 50.25.
t=\frac{-6.5±\frac{\sqrt{201}}{2}}{-0.8}
Multiply 2 times -0.4.
t=\frac{\sqrt{201}-13}{-0.8\times 2}
Now solve the equation t=\frac{-6.5±\frac{\sqrt{201}}{2}}{-0.8} when ± is plus. Add -6.5 to \frac{\sqrt{201}}{2}.
t=\frac{65-5\sqrt{201}}{8}
Divide \frac{-13+\sqrt{201}}{2} by -0.8 by multiplying \frac{-13+\sqrt{201}}{2} by the reciprocal of -0.8.
t=\frac{-\sqrt{201}-13}{-0.8\times 2}
Now solve the equation t=\frac{-6.5±\frac{\sqrt{201}}{2}}{-0.8} when ± is minus. Subtract \frac{\sqrt{201}}{2} from -6.5.
t=\frac{5\sqrt{201}+65}{8}
Divide \frac{-13-\sqrt{201}}{2} by -0.8 by multiplying \frac{-13-\sqrt{201}}{2} by the reciprocal of -0.8.
t=\frac{65-5\sqrt{201}}{8} t=\frac{5\sqrt{201}+65}{8}
The equation is now solved.
-0.4t^{2}+6.5t+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.4t^{2}+6.5t+5-5=-5
Subtract 5 from both sides of the equation.
-0.4t^{2}+6.5t=-5
Subtracting 5 from itself leaves 0.
\frac{-0.4t^{2}+6.5t}{-0.4}=-\frac{5}{-0.4}
Divide both sides of the equation by -0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{6.5}{-0.4}t=-\frac{5}{-0.4}
Dividing by -0.4 undoes the multiplication by -0.4.
t^{2}-16.25t=-\frac{5}{-0.4}
Divide 6.5 by -0.4 by multiplying 6.5 by the reciprocal of -0.4.
t^{2}-16.25t=12.5
Divide -5 by -0.4 by multiplying -5 by the reciprocal of -0.4.
t^{2}-16.25t+\left(-8.125\right)^{2}=12.5+\left(-8.125\right)^{2}
Divide -16.25, the coefficient of the x term, by 2 to get -8.125. Then add the square of -8.125 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-16.25t+66.015625=12.5+66.015625
Square -8.125 by squaring both the numerator and the denominator of the fraction.
t^{2}-16.25t+66.015625=78.515625
Add 12.5 to 66.015625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-8.125\right)^{2}=78.515625
Factor t^{2}-16.25t+66.015625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-8.125\right)^{2}}=\sqrt{78.515625}
Take the square root of both sides of the equation.
t-8.125=\frac{5\sqrt{201}}{8} t-8.125=-\frac{5\sqrt{201}}{8}
Simplify.
t=\frac{5\sqrt{201}+65}{8} t=\frac{65-5\sqrt{201}}{8}
Add 8.125 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}