Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-5x^{2}=-0.4
Swap sides so that all variable terms are on the left hand side.
2x-5x^{2}+0.4=0
Add 0.4 to both sides.
-5x^{2}+2x+0.4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-5\right)\times 0.4}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 2 for b, and 0.4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-5\right)\times 0.4}}{2\left(-5\right)}
Square 2.
x=\frac{-2±\sqrt{4+20\times 0.4}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-2±\sqrt{4+8}}{2\left(-5\right)}
Multiply 20 times 0.4.
x=\frac{-2±\sqrt{12}}{2\left(-5\right)}
Add 4 to 8.
x=\frac{-2±2\sqrt{3}}{2\left(-5\right)}
Take the square root of 12.
x=\frac{-2±2\sqrt{3}}{-10}
Multiply 2 times -5.
x=\frac{2\sqrt{3}-2}{-10}
Now solve the equation x=\frac{-2±2\sqrt{3}}{-10} when ± is plus. Add -2 to 2\sqrt{3}.
x=\frac{1-\sqrt{3}}{5}
Divide -2+2\sqrt{3} by -10.
x=\frac{-2\sqrt{3}-2}{-10}
Now solve the equation x=\frac{-2±2\sqrt{3}}{-10} when ± is minus. Subtract 2\sqrt{3} from -2.
x=\frac{\sqrt{3}+1}{5}
Divide -2-2\sqrt{3} by -10.
x=\frac{1-\sqrt{3}}{5} x=\frac{\sqrt{3}+1}{5}
The equation is now solved.
2x-5x^{2}=-0.4
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+2x=-0.4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+2x}{-5}=-\frac{0.4}{-5}
Divide both sides by -5.
x^{2}+\frac{2}{-5}x=-\frac{0.4}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{2}{5}x=-\frac{0.4}{-5}
Divide 2 by -5.
x^{2}-\frac{2}{5}x=0.08
Divide -0.4 by -5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=0.08+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{2+1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{25}
Add 0.08 to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{3}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{3}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{3}}{5} x-\frac{1}{5}=-\frac{\sqrt{3}}{5}
Simplify.
x=\frac{\sqrt{3}+1}{5} x=\frac{1-\sqrt{3}}{5}
Add \frac{1}{5} to both sides of the equation.