Solve for t
t=\frac{74+i\times 2\sqrt{881}}{15}\approx 4.933333333+3.957552555i
t=\frac{-i\times 2\sqrt{881}+74}{15}\approx 4.933333333-3.957552555i
Share
Copied to clipboard
-0.375t^{2}+3.7t-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-3.7±\sqrt{3.7^{2}-4\left(-0.375\right)\left(-15\right)}}{2\left(-0.375\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.375 for a, 3.7 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-3.7±\sqrt{13.69-4\left(-0.375\right)\left(-15\right)}}{2\left(-0.375\right)}
Square 3.7 by squaring both the numerator and the denominator of the fraction.
t=\frac{-3.7±\sqrt{13.69+1.5\left(-15\right)}}{2\left(-0.375\right)}
Multiply -4 times -0.375.
t=\frac{-3.7±\sqrt{13.69-22.5}}{2\left(-0.375\right)}
Multiply 1.5 times -15.
t=\frac{-3.7±\sqrt{-8.81}}{2\left(-0.375\right)}
Add 13.69 to -22.5 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-3.7±\frac{\sqrt{881}i}{10}}{2\left(-0.375\right)}
Take the square root of -8.81.
t=\frac{-3.7±\frac{\sqrt{881}i}{10}}{-0.75}
Multiply 2 times -0.375.
t=\frac{-37+\sqrt{881}i}{-0.75\times 10}
Now solve the equation t=\frac{-3.7±\frac{\sqrt{881}i}{10}}{-0.75} when ± is plus. Add -3.7 to \frac{i\sqrt{881}}{10}.
t=\frac{-2\sqrt{881}i+74}{15}
Divide \frac{-37+i\sqrt{881}}{10} by -0.75 by multiplying \frac{-37+i\sqrt{881}}{10} by the reciprocal of -0.75.
t=\frac{-\sqrt{881}i-37}{-0.75\times 10}
Now solve the equation t=\frac{-3.7±\frac{\sqrt{881}i}{10}}{-0.75} when ± is minus. Subtract \frac{i\sqrt{881}}{10} from -3.7.
t=\frac{74+2\sqrt{881}i}{15}
Divide \frac{-37-i\sqrt{881}}{10} by -0.75 by multiplying \frac{-37-i\sqrt{881}}{10} by the reciprocal of -0.75.
t=\frac{-2\sqrt{881}i+74}{15} t=\frac{74+2\sqrt{881}i}{15}
The equation is now solved.
-0.375t^{2}+3.7t-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.375t^{2}+3.7t-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
-0.375t^{2}+3.7t=-\left(-15\right)
Subtracting -15 from itself leaves 0.
-0.375t^{2}+3.7t=15
Subtract -15 from 0.
\frac{-0.375t^{2}+3.7t}{-0.375}=\frac{15}{-0.375}
Divide both sides of the equation by -0.375, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{3.7}{-0.375}t=\frac{15}{-0.375}
Dividing by -0.375 undoes the multiplication by -0.375.
t^{2}-\frac{148}{15}t=\frac{15}{-0.375}
Divide 3.7 by -0.375 by multiplying 3.7 by the reciprocal of -0.375.
t^{2}-\frac{148}{15}t=-40
Divide 15 by -0.375 by multiplying 15 by the reciprocal of -0.375.
t^{2}-\frac{148}{15}t+\left(-\frac{74}{15}\right)^{2}=-40+\left(-\frac{74}{15}\right)^{2}
Divide -\frac{148}{15}, the coefficient of the x term, by 2 to get -\frac{74}{15}. Then add the square of -\frac{74}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{148}{15}t+\frac{5476}{225}=-40+\frac{5476}{225}
Square -\frac{74}{15} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{148}{15}t+\frac{5476}{225}=-\frac{3524}{225}
Add -40 to \frac{5476}{225}.
\left(t-\frac{74}{15}\right)^{2}=-\frac{3524}{225}
Factor t^{2}-\frac{148}{15}t+\frac{5476}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{74}{15}\right)^{2}}=\sqrt{-\frac{3524}{225}}
Take the square root of both sides of the equation.
t-\frac{74}{15}=\frac{2\sqrt{881}i}{15} t-\frac{74}{15}=-\frac{2\sqrt{881}i}{15}
Simplify.
t=\frac{74+2\sqrt{881}i}{15} t=\frac{-2\sqrt{881}i+74}{15}
Add \frac{74}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}