Solve for x
x = \frac{2 \sqrt{895} + 50}{9} \approx 12.203677912
x=\frac{50-2\sqrt{895}}{9}\approx -1.092566801
Graph
Share
Copied to clipboard
-0.09x^{2}+x+1.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-0.09\right)\times 1.2}}{2\left(-0.09\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.09 for a, 1 for b, and 1.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-0.09\right)\times 1.2}}{2\left(-0.09\right)}
Square 1.
x=\frac{-1±\sqrt{1+0.36\times 1.2}}{2\left(-0.09\right)}
Multiply -4 times -0.09.
x=\frac{-1±\sqrt{1+0.432}}{2\left(-0.09\right)}
Multiply 0.36 times 1.2 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-1±\sqrt{1.432}}{2\left(-0.09\right)}
Add 1 to 0.432.
x=\frac{-1±\frac{\sqrt{895}}{25}}{2\left(-0.09\right)}
Take the square root of 1.432.
x=\frac{-1±\frac{\sqrt{895}}{25}}{-0.18}
Multiply 2 times -0.09.
x=\frac{\frac{\sqrt{895}}{25}-1}{-0.18}
Now solve the equation x=\frac{-1±\frac{\sqrt{895}}{25}}{-0.18} when ± is plus. Add -1 to \frac{\sqrt{895}}{25}.
x=\frac{50-2\sqrt{895}}{9}
Divide -1+\frac{\sqrt{895}}{25} by -0.18 by multiplying -1+\frac{\sqrt{895}}{25} by the reciprocal of -0.18.
x=\frac{-\frac{\sqrt{895}}{25}-1}{-0.18}
Now solve the equation x=\frac{-1±\frac{\sqrt{895}}{25}}{-0.18} when ± is minus. Subtract \frac{\sqrt{895}}{25} from -1.
x=\frac{2\sqrt{895}+50}{9}
Divide -1-\frac{\sqrt{895}}{25} by -0.18 by multiplying -1-\frac{\sqrt{895}}{25} by the reciprocal of -0.18.
x=\frac{50-2\sqrt{895}}{9} x=\frac{2\sqrt{895}+50}{9}
The equation is now solved.
-0.09x^{2}+x+1.2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.09x^{2}+x+1.2-1.2=-1.2
Subtract 1.2 from both sides of the equation.
-0.09x^{2}+x=-1.2
Subtracting 1.2 from itself leaves 0.
\frac{-0.09x^{2}+x}{-0.09}=-\frac{1.2}{-0.09}
Divide both sides of the equation by -0.09, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1}{-0.09}x=-\frac{1.2}{-0.09}
Dividing by -0.09 undoes the multiplication by -0.09.
x^{2}-\frac{100}{9}x=-\frac{1.2}{-0.09}
Divide 1 by -0.09 by multiplying 1 by the reciprocal of -0.09.
x^{2}-\frac{100}{9}x=\frac{40}{3}
Divide -1.2 by -0.09 by multiplying -1.2 by the reciprocal of -0.09.
x^{2}-\frac{100}{9}x+\left(-\frac{50}{9}\right)^{2}=\frac{40}{3}+\left(-\frac{50}{9}\right)^{2}
Divide -\frac{100}{9}, the coefficient of the x term, by 2 to get -\frac{50}{9}. Then add the square of -\frac{50}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=\frac{40}{3}+\frac{2500}{81}
Square -\frac{50}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=\frac{3580}{81}
Add \frac{40}{3} to \frac{2500}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{50}{9}\right)^{2}=\frac{3580}{81}
Factor x^{2}-\frac{100}{9}x+\frac{2500}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{9}\right)^{2}}=\sqrt{\frac{3580}{81}}
Take the square root of both sides of the equation.
x-\frac{50}{9}=\frac{2\sqrt{895}}{9} x-\frac{50}{9}=-\frac{2\sqrt{895}}{9}
Simplify.
x=\frac{2\sqrt{895}+50}{9} x=\frac{50-2\sqrt{895}}{9}
Add \frac{50}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}