- 0,5 - ( ( \frac { 11 } { 15 } - \frac { 14 } { 15 } \cdot \frac { 1 } { 7 } ) : ( - \frac { 19 } { 20 } - \frac { 9 } { 20 } : 1,8 ) ) : ( - \frac { 1 } { 3 } )
Evaluate
-2
Factor
-2
Share
Copied to clipboard
-0,5-\frac{\left(\frac{11}{15}-\frac{14}{15}\times \frac{1}{7}\right)\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Divide \frac{\frac{11}{15}-\frac{14}{15}\times \frac{1}{7}}{-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}} by -\frac{1}{3} by multiplying \frac{\frac{11}{15}-\frac{14}{15}\times \frac{1}{7}}{-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}} by the reciprocal of -\frac{1}{3}.
-0,5-\frac{\left(\frac{11}{15}-\frac{14\times 1}{15\times 7}\right)\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Multiply \frac{14}{15} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
-0,5-\frac{\left(\frac{11}{15}-\frac{14}{105}\right)\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Do the multiplications in the fraction \frac{14\times 1}{15\times 7}.
-0,5-\frac{\left(\frac{11}{15}-\frac{2}{15}\right)\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Reduce the fraction \frac{14}{105} to lowest terms by extracting and canceling out 7.
-0,5-\frac{\frac{11-2}{15}\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Since \frac{11}{15} and \frac{2}{15} have the same denominator, subtract them by subtracting their numerators.
-0,5-\frac{\frac{9}{15}\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Subtract 2 from 11 to get 9.
-0,5-\frac{\frac{3}{5}\times 3}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
-0,5-\frac{\frac{3\times 3}{5}}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Express \frac{3}{5}\times 3 as a single fraction.
-0,5-\frac{\frac{9}{5}}{\left(-\frac{19}{20}-\frac{\frac{9}{20}}{1,8}\right)\left(-1\right)}
Multiply 3 and 3 to get 9.
-0,5-\frac{\frac{9}{5}}{\left(-\frac{19}{20}-\frac{9}{20\times 1,8}\right)\left(-1\right)}
Express \frac{\frac{9}{20}}{1,8} as a single fraction.
-0,5-\frac{\frac{9}{5}}{\left(-\frac{19}{20}-\frac{9}{36}\right)\left(-1\right)}
Multiply 20 and 1,8 to get 36.
-0,5-\frac{\frac{9}{5}}{\left(-\frac{19}{20}-\frac{1}{4}\right)\left(-1\right)}
Reduce the fraction \frac{9}{36} to lowest terms by extracting and canceling out 9.
-0,5-\frac{\frac{9}{5}}{\left(-\frac{19}{20}-\frac{5}{20}\right)\left(-1\right)}
Least common multiple of 20 and 4 is 20. Convert -\frac{19}{20} and \frac{1}{4} to fractions with denominator 20.
-0,5-\frac{\frac{9}{5}}{\frac{-19-5}{20}\left(-1\right)}
Since -\frac{19}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
-0,5-\frac{\frac{9}{5}}{\frac{-24}{20}\left(-1\right)}
Subtract 5 from -19 to get -24.
-0,5-\frac{\frac{9}{5}}{-\frac{6}{5}\left(-1\right)}
Reduce the fraction \frac{-24}{20} to lowest terms by extracting and canceling out 4.
-0,5-\frac{\frac{9}{5}}{\frac{6}{5}}
Multiply -\frac{6}{5} and -1 to get \frac{6}{5}.
-0,5-\frac{9}{5}\times \frac{5}{6}
Divide \frac{9}{5} by \frac{6}{5} by multiplying \frac{9}{5} by the reciprocal of \frac{6}{5}.
-0,5-\frac{9\times 5}{5\times 6}
Multiply \frac{9}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
-0,5-\frac{9}{6}
Cancel out 5 in both numerator and denominator.
-0,5-\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
-\frac{1}{2}-\frac{3}{2}
Convert decimal number -0,5 to fraction -\frac{5}{10}. Reduce the fraction -\frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{-1-3}{2}
Since -\frac{1}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-4}{2}
Subtract 3 from -1 to get -4.
-2
Divide -4 by 2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}