Evaluate
12x-2xy
Expand
12x-2xy
Share
Copied to clipboard
-\left(x-4x\left(3-2y\right)\right)-3\left(5\left(-x\right)y+\left(-x\right)\times \frac{1}{3}+3xy\right)
Use the distributive property to multiply -x by 5y+\frac{1}{3}.
-\left(x-4x\left(3-2y\right)\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Multiply -1 and 4 to get -4.
-\left(x-12x+8xy\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Use the distributive property to multiply -4x by 3-2y.
-\left(-11x+8xy\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Combine x and -12x to get -11x.
-\left(-11x\right)-8xy-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
To find the opposite of -11x+8xy, find the opposite of each term.
11x-8xy-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
The opposite of -11x is 11x.
11x-8xy-3\left(-5xy-x\times \frac{1}{3}+3xy\right)
Multiply 5 and -1 to get -5.
11x-8xy-3\left(-5xy-\frac{1}{3}x+3xy\right)
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
11x-8xy-3\left(-2xy-\frac{1}{3}x\right)
Combine -5xy and 3xy to get -2xy.
11x-8xy+6xy-3\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -3 by -2xy-\frac{1}{3}x.
11x-8xy+6xy+x
Multiply -3 times -\frac{1}{3}.
11x-2xy+x
Combine -8xy and 6xy to get -2xy.
12x-2xy
Combine 11x and x to get 12x.
-\left(x-4x\left(3-2y\right)\right)-3\left(5\left(-x\right)y+\left(-x\right)\times \frac{1}{3}+3xy\right)
Use the distributive property to multiply -x by 5y+\frac{1}{3}.
-\left(x-4x\left(3-2y\right)\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Multiply -1 and 4 to get -4.
-\left(x-12x+8xy\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Use the distributive property to multiply -4x by 3-2y.
-\left(-11x+8xy\right)-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
Combine x and -12x to get -11x.
-\left(-11x\right)-8xy-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
To find the opposite of -11x+8xy, find the opposite of each term.
11x-8xy-3\left(5\left(-1\right)xy-x\times \frac{1}{3}+3xy\right)
The opposite of -11x is 11x.
11x-8xy-3\left(-5xy-x\times \frac{1}{3}+3xy\right)
Multiply 5 and -1 to get -5.
11x-8xy-3\left(-5xy-\frac{1}{3}x+3xy\right)
Multiply -1 and \frac{1}{3} to get -\frac{1}{3}.
11x-8xy-3\left(-2xy-\frac{1}{3}x\right)
Combine -5xy and 3xy to get -2xy.
11x-8xy+6xy-3\left(-\frac{1}{3}\right)x
Use the distributive property to multiply -3 by -2xy-\frac{1}{3}x.
11x-8xy+6xy+x
Multiply -3 times -\frac{1}{3}.
11x-2xy+x
Combine -8xy and 6xy to get -2xy.
12x-2xy
Combine 11x and x to get 12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}