Solve for h
h=x^{2}-2x+6-\frac{1}{x}
x\neq 0
Graph
Share
Copied to clipboard
-\left(x-1\right)^{2}+x^{3}+2x+1+2x=x^{2}+hx+1
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-\left(x^{2}-2x+1\right)+x^{3}+2x+1+2x=x^{2}+hx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-x^{2}+2x-1+x^{3}+2x+1+2x=x^{2}+hx+1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
-x^{2}+4x-1+x^{3}+1+2x=x^{2}+hx+1
Combine 2x and 2x to get 4x.
-x^{2}+4x+x^{3}+2x=x^{2}+hx+1
Add -1 and 1 to get 0.
-x^{2}+6x+x^{3}=x^{2}+hx+1
Combine 4x and 2x to get 6x.
x^{2}+hx+1=-x^{2}+6x+x^{3}
Swap sides so that all variable terms are on the left hand side.
hx+1=-x^{2}+6x+x^{3}-x^{2}
Subtract x^{2} from both sides.
hx+1=-2x^{2}+6x+x^{3}
Combine -x^{2} and -x^{2} to get -2x^{2}.
hx=-2x^{2}+6x+x^{3}-1
Subtract 1 from both sides.
xh=x^{3}-2x^{2}+6x-1
The equation is in standard form.
\frac{xh}{x}=\frac{x^{3}-2x^{2}+6x-1}{x}
Divide both sides by x.
h=\frac{x^{3}-2x^{2}+6x-1}{x}
Dividing by x undoes the multiplication by x.
h=x^{2}-2x+6-\frac{1}{x}
Divide -2x^{2}+6x-1+x^{3} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}