Evaluate
55-8x^{3}-2x^{4}
Expand
55-8x^{3}-2x^{4}
Graph
Share
Copied to clipboard
\left(-x^{2}-9\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{2}+9, find the opposite of each term.
\left(-x^{3}+3x^{2}-9x+27\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply -x^{2}-9 by x-3.
-x^{4}+81-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply -x^{3}+3x^{2}-9x+27 by 3+x and combine like terms.
-x^{4}+81-\left(9+6x+x^{2}\right)-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
-x^{4}+81-9-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of 9+6x+x^{2}, find the opposite of each term.
-x^{4}+72-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 9 from 81 to get 72.
-x^{4}+72-6x-x^{2}-\left(x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16\right)+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Square 4-x+x^{3}.
-x^{4}+72-6x-x^{2}-x^{6}+2x^{4}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16, find the opposite of each term.
x^{4}+72-6x-x^{2}-x^{6}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -x^{4} and 2x^{4} to get x^{4}.
x^{4}+72-6x-2x^{2}-x^{6}-8x^{3}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{4}+72+2x-2x^{2}-x^{6}-8x^{3}-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -6x and 8x to get 2x.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 16 from 72 to get 56.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{2}-1\right)^{3}.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3x^{4}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+56+2x-2x^{2}-8x^{3}-3x^{4}+3x^{2}-1-x\left(x+2\right)
Combine -x^{6} and x^{6} to get 0.
-2x^{4}+56+2x-2x^{2}-8x^{3}+3x^{2}-1-x\left(x+2\right)
Combine x^{4} and -3x^{4} to get -2x^{4}.
-2x^{4}+56+2x+x^{2}-8x^{3}-1-x\left(x+2\right)
Combine -2x^{2} and 3x^{2} to get x^{2}.
-2x^{4}+55+2x+x^{2}-8x^{3}-x\left(x+2\right)
Subtract 1 from 56 to get 55.
-2x^{4}+55+2x+x^{2}-8x^{3}-\left(x^{2}+2x\right)
Use the distributive property to multiply x by x+2.
-2x^{4}+55+2x+x^{2}-8x^{3}-x^{2}-2x
To find the opposite of x^{2}+2x, find the opposite of each term.
-2x^{4}+55+2x-8x^{3}-2x
Combine x^{2} and -x^{2} to get 0.
-2x^{4}+55-8x^{3}
Combine 2x and -2x to get 0.
\left(-x^{2}-9\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{2}+9, find the opposite of each term.
\left(-x^{3}+3x^{2}-9x+27\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply -x^{2}-9 by x-3.
-x^{4}+81-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply -x^{3}+3x^{2}-9x+27 by 3+x and combine like terms.
-x^{4}+81-\left(9+6x+x^{2}\right)-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
-x^{4}+81-9-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of 9+6x+x^{2}, find the opposite of each term.
-x^{4}+72-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 9 from 81 to get 72.
-x^{4}+72-6x-x^{2}-\left(x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16\right)+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Square 4-x+x^{3}.
-x^{4}+72-6x-x^{2}-x^{6}+2x^{4}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16, find the opposite of each term.
x^{4}+72-6x-x^{2}-x^{6}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -x^{4} and 2x^{4} to get x^{4}.
x^{4}+72-6x-2x^{2}-x^{6}-8x^{3}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{4}+72+2x-2x^{2}-x^{6}-8x^{3}-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -6x and 8x to get 2x.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 16 from 72 to get 56.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{2}-1\right)^{3}.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x^{4}+56+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3x^{4}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+56+2x-2x^{2}-8x^{3}-3x^{4}+3x^{2}-1-x\left(x+2\right)
Combine -x^{6} and x^{6} to get 0.
-2x^{4}+56+2x-2x^{2}-8x^{3}+3x^{2}-1-x\left(x+2\right)
Combine x^{4} and -3x^{4} to get -2x^{4}.
-2x^{4}+56+2x+x^{2}-8x^{3}-1-x\left(x+2\right)
Combine -2x^{2} and 3x^{2} to get x^{2}.
-2x^{4}+55+2x+x^{2}-8x^{3}-x\left(x+2\right)
Subtract 1 from 56 to get 55.
-2x^{4}+55+2x+x^{2}-8x^{3}-\left(x^{2}+2x\right)
Use the distributive property to multiply x by x+2.
-2x^{4}+55+2x+x^{2}-8x^{3}-x^{2}-2x
To find the opposite of x^{2}+2x, find the opposite of each term.
-2x^{4}+55+2x-8x^{3}-2x
Combine x^{2} and -x^{2} to get 0.
-2x^{4}+55-8x^{3}
Combine 2x and -2x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}