Evaluate
-\left(x-3h\right)\left(x+h+2\right)
Expand
-\left(x^{2}-2hx+2x-3h^{2}-6h\right)
Graph
Share
Copied to clipboard
\left(-x-h-2\right)\left(x-3h\right)
To find the opposite of x+h+2, find the opposite of each term.
-x^{2}+3xh-hx+3h^{2}-2x+6h
Apply the distributive property by multiplying each term of -x-h-2 by each term of x-3h.
-x^{2}+2xh+3h^{2}-2x+6h
Combine 3xh and -hx to get 2xh.
\left(-x-h-2\right)\left(x-3h\right)
To find the opposite of x+h+2, find the opposite of each term.
-x^{2}+3xh-hx+3h^{2}-2x+6h
Apply the distributive property by multiplying each term of -x-h-2 by each term of x-3h.
-x^{2}+2xh+3h^{2}-2x+6h
Combine 3xh and -hx to get 2xh.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}