Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x-1\right)\left(x+4\right)-x+3x=8
To find the opposite of x+1, find the opposite of each term.
-x^{2}-4x-x-4-x+3x=8
Apply the distributive property by multiplying each term of -x-1 by each term of x+4.
-x^{2}-5x-4-x+3x=8
Combine -4x and -x to get -5x.
-x^{2}-6x-4+3x=8
Combine -5x and -x to get -6x.
-x^{2}-3x-4=8
Combine -6x and 3x to get -3x.
-x^{2}-3x-4-8=0
Subtract 8 from both sides.
-x^{2}-3x-12=0
Subtract 8 from -4 to get -12.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-12\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9-48}}{2\left(-1\right)}
Multiply 4 times -12.
x=\frac{-\left(-3\right)±\sqrt{-39}}{2\left(-1\right)}
Add 9 to -48.
x=\frac{-\left(-3\right)±\sqrt{39}i}{2\left(-1\right)}
Take the square root of -39.
x=\frac{3±\sqrt{39}i}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{39}i}{-2}
Multiply 2 times -1.
x=\frac{3+\sqrt{39}i}{-2}
Now solve the equation x=\frac{3±\sqrt{39}i}{-2} when ± is plus. Add 3 to i\sqrt{39}.
x=\frac{-\sqrt{39}i-3}{2}
Divide 3+i\sqrt{39} by -2.
x=\frac{-\sqrt{39}i+3}{-2}
Now solve the equation x=\frac{3±\sqrt{39}i}{-2} when ± is minus. Subtract i\sqrt{39} from 3.
x=\frac{-3+\sqrt{39}i}{2}
Divide 3-i\sqrt{39} by -2.
x=\frac{-\sqrt{39}i-3}{2} x=\frac{-3+\sqrt{39}i}{2}
The equation is now solved.
\left(-x-1\right)\left(x+4\right)-x+3x=8
To find the opposite of x+1, find the opposite of each term.
-x^{2}-4x-x-4-x+3x=8
Apply the distributive property by multiplying each term of -x-1 by each term of x+4.
-x^{2}-5x-4-x+3x=8
Combine -4x and -x to get -5x.
-x^{2}-6x-4+3x=8
Combine -5x and -x to get -6x.
-x^{2}-3x-4=8
Combine -6x and 3x to get -3x.
-x^{2}-3x=8+4
Add 4 to both sides.
-x^{2}-3x=12
Add 8 and 4 to get 12.
\frac{-x^{2}-3x}{-1}=\frac{12}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+3x=\frac{12}{-1}
Divide -3 by -1.
x^{2}+3x=-12
Divide 12 by -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-12+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-12+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{39}{4}
Add -12 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{39}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{39}i}{2} x+\frac{3}{2}=-\frac{\sqrt{39}i}{2}
Simplify.
x=\frac{-3+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.