Evaluate
\frac{p\left(p+1\right)}{2}
Expand
\frac{p^{2}+p}{2}
Share
Copied to clipboard
\left(-p-1\right)\times \frac{-p}{2}
To find the opposite of p+1, find the opposite of each term.
\frac{\left(-p-1\right)\left(-p\right)}{2}
Express \left(-p-1\right)\times \frac{-p}{2} as a single fraction.
\frac{-p\left(-p\right)-\left(-p\right)}{2}
Use the distributive property to multiply -p-1 by -p.
\frac{pp-\left(-p\right)}{2}
Multiply -1 and -1 to get 1.
\frac{p^{2}-\left(-p\right)}{2}
Multiply p and p to get p^{2}.
\frac{p^{2}+p}{2}
Multiply -1 and -1 to get 1.
\left(-p-1\right)\times \frac{-p}{2}
To find the opposite of p+1, find the opposite of each term.
\frac{\left(-p-1\right)\left(-p\right)}{2}
Express \left(-p-1\right)\times \frac{-p}{2} as a single fraction.
\frac{-p\left(-p\right)-\left(-p\right)}{2}
Use the distributive property to multiply -p-1 by -p.
\frac{pp-\left(-p\right)}{2}
Multiply -1 and -1 to get 1.
\frac{p^{2}-\left(-p\right)}{2}
Multiply p and p to get p^{2}.
\frac{p^{2}+p}{2}
Multiply -1 and -1 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}