Solve for l (complex solution)
\left\{\begin{matrix}l=-\frac{m}{1-x}\text{, }&x\neq 1\\l\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}\\m=l\left(x-1\right)\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for l
\left\{\begin{matrix}l=-\frac{m}{1-x}\text{, }&x\neq 1\\l\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=l\left(x-1\right)\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
-l-m-lx^{2}+\left(2l+m\right)x=0
To find the opposite of l+m, find the opposite of each term.
-l-m-lx^{2}+2lx+mx=0
Use the distributive property to multiply 2l+m by x.
-l-m-lx^{2}+2lx=-mx
Subtract mx from both sides. Anything subtracted from zero gives its negation.
-l-lx^{2}+2lx=-mx+m
Add m to both sides.
\left(-1-x^{2}+2x\right)l=-mx+m
Combine all terms containing l.
\left(-x^{2}+2x-1\right)l=m-mx
The equation is in standard form.
\frac{\left(-x^{2}+2x-1\right)l}{-x^{2}+2x-1}=\frac{m-mx}{-x^{2}+2x-1}
Divide both sides by -1-x^{2}+2x.
l=\frac{m-mx}{-x^{2}+2x-1}
Dividing by -1-x^{2}+2x undoes the multiplication by -1-x^{2}+2x.
l=\frac{m}{x-1}
Divide -mx+m by -1-x^{2}+2x.
-l-m-lx^{2}+\left(2l+m\right)x=0
To find the opposite of l+m, find the opposite of each term.
-l-m-lx^{2}+2lx+mx=0
Use the distributive property to multiply 2l+m by x.
-l-m-lx^{2}+mx=-2lx
Subtract 2lx from both sides. Anything subtracted from zero gives its negation.
-m-lx^{2}+mx=-2lx+l
Add l to both sides.
-m+mx=-2lx+l+lx^{2}
Add lx^{2} to both sides.
\left(-1+x\right)m=-2lx+l+lx^{2}
Combine all terms containing m.
\left(x-1\right)m=lx^{2}-2lx+l
The equation is in standard form.
\frac{\left(x-1\right)m}{x-1}=\frac{l\left(x-1\right)^{2}}{x-1}
Divide both sides by x-1.
m=\frac{l\left(x-1\right)^{2}}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
m=l\left(x-1\right)
Divide l\left(-1+x\right)^{2} by x-1.
-l-m-lx^{2}+\left(2l+m\right)x=0
To find the opposite of l+m, find the opposite of each term.
-l-m-lx^{2}+2lx+mx=0
Use the distributive property to multiply 2l+m by x.
-l-m-lx^{2}+2lx=-mx
Subtract mx from both sides. Anything subtracted from zero gives its negation.
-l-lx^{2}+2lx=-mx+m
Add m to both sides.
\left(-1-x^{2}+2x\right)l=-mx+m
Combine all terms containing l.
\left(-x^{2}+2x-1\right)l=m-mx
The equation is in standard form.
\frac{\left(-x^{2}+2x-1\right)l}{-x^{2}+2x-1}=\frac{m-mx}{-x^{2}+2x-1}
Divide both sides by -1-x^{2}+2x.
l=\frac{m-mx}{-x^{2}+2x-1}
Dividing by -1-x^{2}+2x undoes the multiplication by -1-x^{2}+2x.
l=\frac{m}{x-1}
Divide -mx+m by -1-x^{2}+2x.
-l-m-lx^{2}+\left(2l+m\right)x=0
To find the opposite of l+m, find the opposite of each term.
-l-m-lx^{2}+2lx+mx=0
Use the distributive property to multiply 2l+m by x.
-l-m-lx^{2}+mx=-2lx
Subtract 2lx from both sides. Anything subtracted from zero gives its negation.
-m-lx^{2}+mx=-2lx+l
Add l to both sides.
-m+mx=-2lx+l+lx^{2}
Add lx^{2} to both sides.
\left(-1+x\right)m=-2lx+l+lx^{2}
Combine all terms containing m.
\left(x-1\right)m=lx^{2}-2lx+l
The equation is in standard form.
\frac{\left(x-1\right)m}{x-1}=\frac{l\left(x-1\right)^{2}}{x-1}
Divide both sides by -1+x.
m=\frac{l\left(x-1\right)^{2}}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
m=l\left(x-1\right)
Divide l\left(-1+x\right)^{2} by -1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}