- ( b - a ) - [ - ( a + 2 b - 1 ) + ( \frac { 1 } { a } a b ) ] - \sum \frac { 3 } { 2 } a + b = ( \frac { 1 } { 2 } b + 1 ) + \frac { 1 } { a } a b
Solve for b
b=-3aΣ+4a-4
a\neq 0
Solve for a
\left\{\begin{matrix}a=\frac{b+4}{4-3Σ}\text{, }&b\neq -4\text{ and }Σ\neq \frac{4}{3}\\a\neq 0\text{, }&b=-4\text{ and }Σ=\frac{4}{3}\end{matrix}\right.
Share
Copied to clipboard
2a\left(-\left(b-a\right)-\left(-\left(a+2b-1\right)+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2a\left(-b+a-\left(-\left(a+2b-1\right)+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of b-a, find the opposite of each term.
2a\left(-b+a-\left(-a-2b+1+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of a+2b-1, find the opposite of each term.
2a\left(-b+a-\left(-a-2b+1+\frac{a}{a}b\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Express \frac{1}{a}a as a single fraction.
2a\left(-b+a-\left(-a-2b+1+1b\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Cancel out a in both numerator and denominator.
2a\left(-b+a-\left(-a-b+1\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine -2b and 1b to get -b.
2a\left(-b+a+a+b-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of -a-b+1, find the opposite of each term.
2a\left(-b+2a+b-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine a and a to get 2a.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine -b and b to get 0.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=ba+2a+2\times 1ab
Multiply \frac{1}{2} and 2 to get 1.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=ba+2a+2ab
Multiply 2 and 1 to get 2.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=3ba+2a
Combine ba and 2ab to get 3ba.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab-3ba=2a
Subtract 3ba from both sides.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)-ab=2a
Combine 2ab and -3ba to get -ab.
-ab=2a-2a\left(2a-1-Σ\times \frac{3}{2}a\right)
Subtract 2a\left(2a-1-Σ\times \frac{3}{2}a\right) from both sides.
-ab=2a-2a\left(2a-1-\frac{3}{2}Σa\right)
Multiply -1 and \frac{3}{2} to get -\frac{3}{2}.
-ab=2a-4a^{2}+2a+3a^{2}Σ
Use the distributive property to multiply -2a by 2a-1-\frac{3}{2}Σa.
-ab=4a-4a^{2}+3a^{2}Σ
Combine 2a and 2a to get 4a.
\left(-a\right)b=3Σa^{2}+4a-4a^{2}
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=\frac{a\left(3aΣ-4a+4\right)}{-a}
Divide both sides by -a.
b=\frac{a\left(3aΣ-4a+4\right)}{-a}
Dividing by -a undoes the multiplication by -a.
b=-3aΣ+4a-4
Divide a\left(4-4a+3aΣ\right) by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}