Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

2a\left(-\left(b-a\right)-\left(-\left(a+2b-1\right)+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2a\left(-b+a-\left(-\left(a+2b-1\right)+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of b-a, find the opposite of each term.
2a\left(-b+a-\left(-a-2b+1+\frac{1}{a}ab\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of a+2b-1, find the opposite of each term.
2a\left(-b+a-\left(-a-2b+1+\frac{a}{a}b\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Express \frac{1}{a}a as a single fraction.
2a\left(-b+a-\left(-a-2b+1+1b\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Cancel out a in both numerator and denominator.
2a\left(-b+a-\left(-a-b+1\right)-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine -2b and 1b to get -b.
2a\left(-b+a+a+b-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
To find the opposite of -a-b+1, find the opposite of each term.
2a\left(-b+2a+b-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine a and a to get 2a.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=\frac{1}{2}b\times 2a+2a+2\times 1ab
Combine -b and b to get 0.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=ba+2a+2\times 1ab
Multiply \frac{1}{2} and 2 to get 1.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=ba+2a+2ab
Multiply 2 and 1 to get 2.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab=3ba+2a
Combine ba and 2ab to get 3ba.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)+2ab-3ba=2a
Subtract 3ba from both sides.
2a\left(2a-1-Σ\times \frac{3}{2}a\right)-ab=2a
Combine 2ab and -3ba to get -ab.
-ab=2a-2a\left(2a-1-Σ\times \frac{3}{2}a\right)
Subtract 2a\left(2a-1-Σ\times \frac{3}{2}a\right) from both sides.
-ab=2a-2a\left(2a-1-\frac{3}{2}Σa\right)
Multiply -1 and \frac{3}{2} to get -\frac{3}{2}.
-ab=2a-4a^{2}+2a+3a^{2}Σ
Use the distributive property to multiply -2a by 2a-1-\frac{3}{2}Σa.
-ab=4a-4a^{2}+3a^{2}Σ
Combine 2a and 2a to get 4a.
\left(-a\right)b=3Σa^{2}+4a-4a^{2}
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=\frac{a\left(3aΣ-4a+4\right)}{-a}
Divide both sides by -a.
b=\frac{a\left(3aΣ-4a+4\right)}{-a}
Dividing by -a undoes the multiplication by -a.
b=-3aΣ+4a-4
Divide a\left(4-4a+3aΣ\right) by -a.