Evaluate
-\left(a-b\right)\left(a-6b\right)
Expand
-a^{2}+7ab-6b^{2}
Share
Copied to clipboard
\left(-a-\left(-6b\right)\right)\left(a-b\right)
To find the opposite of a-6b, find the opposite of each term.
\left(-a+6b\right)\left(a-b\right)
The opposite of -6b is 6b.
-a^{2}+ab+6ba-6b^{2}
Apply the distributive property by multiplying each term of -a+6b by each term of a-b.
-a^{2}+7ab-6b^{2}
Combine ab and 6ba to get 7ab.
\left(-a-\left(-6b\right)\right)\left(a-b\right)
To find the opposite of a-6b, find the opposite of each term.
\left(-a+6b\right)\left(a-b\right)
The opposite of -6b is 6b.
-a^{2}+ab+6ba-6b^{2}
Apply the distributive property by multiplying each term of -a+6b by each term of a-b.
-a^{2}+7ab-6b^{2}
Combine ab and 6ba to get 7ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}