Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(81x^{2}+108x+36\right)+\left(3x+7\right)\left(3x-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+6\right)^{2}.
-81x^{2}-108x-36+\left(3x+7\right)\left(3x-7\right)
To find the opposite of 81x^{2}+108x+36, find the opposite of each term.
-81x^{2}-108x-36+\left(3x\right)^{2}-49
Consider \left(3x+7\right)\left(3x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
-81x^{2}-108x-36+3^{2}x^{2}-49
Expand \left(3x\right)^{2}.
-81x^{2}-108x-36+9x^{2}-49
Calculate 3 to the power of 2 and get 9.
-72x^{2}-108x-36-49
Combine -81x^{2} and 9x^{2} to get -72x^{2}.
-72x^{2}-108x-85
Subtract 49 from -36 to get -85.
-\left(81x^{2}+108x+36\right)+\left(3x+7\right)\left(3x-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+6\right)^{2}.
-81x^{2}-108x-36+\left(3x+7\right)\left(3x-7\right)
To find the opposite of 81x^{2}+108x+36, find the opposite of each term.
-81x^{2}-108x-36+\left(3x\right)^{2}-49
Consider \left(3x+7\right)\left(3x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
-81x^{2}-108x-36+3^{2}x^{2}-49
Expand \left(3x\right)^{2}.
-81x^{2}-108x-36+9x^{2}-49
Calculate 3 to the power of 2 and get 9.
-72x^{2}-108x-36-49
Combine -81x^{2} and 9x^{2} to get -72x^{2}.
-72x^{2}-108x-85
Subtract 49 from -36 to get -85.