Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{\frac{1}{2}}\times \frac{4}{3}x^{\frac{1}{3}}
Multiply -1 and 5 to get -5.
-\frac{20}{3}x^{\frac{1}{2}}x^{\frac{1}{3}}
Multiply -5 and \frac{4}{3} to get -\frac{20}{3}.
-\frac{20}{3}x^{\frac{5}{6}}
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{1}{3} to get \frac{5}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{\frac{1}{2}}\times \frac{4}{3}x^{\frac{1}{3}})
Multiply -1 and 5 to get -5.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{20}{3}x^{\frac{1}{2}}x^{\frac{1}{3}})
Multiply -5 and \frac{4}{3} to get -\frac{20}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{20}{3}x^{\frac{5}{6}})
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{1}{3} to get \frac{5}{6}.
\frac{5}{6}\left(-\frac{20}{3}\right)x^{\frac{5}{6}-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{50}{9}x^{\frac{5}{6}-1}
Multiply \frac{5}{6} times -\frac{20}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-\frac{50}{9}x^{-\frac{1}{6}}
Subtract 1 from \frac{5}{6}.