Evaluate
-5x-6
Expand
-5x-6
Graph
Share
Copied to clipboard
-3x-\left(-4\right)-10\left(\frac{x}{5}+1\right)
To find the opposite of 3x-4, find the opposite of each term.
-3x+4-10\left(\frac{x}{5}+1\right)
The opposite of -4 is 4.
-3x+4-10\left(\frac{x}{5}+\frac{5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{5}{5}.
-3x+4-10\times \frac{x+5}{5}
Since \frac{x}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
-3x+4-2\left(x+5\right)
Cancel out 5, the greatest common factor in 10 and 5.
-3x+4-2x-10
Use the distributive property to multiply -2 by x+5.
-5x+4-10
Combine -3x and -2x to get -5x.
-5x-6
Subtract 10 from 4 to get -6.
-3x-\left(-4\right)-10\left(\frac{x}{5}+1\right)
To find the opposite of 3x-4, find the opposite of each term.
-3x+4-10\left(\frac{x}{5}+1\right)
The opposite of -4 is 4.
-3x+4-10\left(\frac{x}{5}+\frac{5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{5}{5}.
-3x+4-10\times \frac{x+5}{5}
Since \frac{x}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
-3x+4-2\left(x+5\right)
Cancel out 5, the greatest common factor in 10 and 5.
-3x+4-2x-10
Use the distributive property to multiply -2 by x+5.
-5x+4-10
Combine -3x and -2x to get -5x.
-5x-6
Subtract 10 from 4 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}